
Speculative Computation in Multilisp

by

Randy Brent Osborne

MIT/LCS/TR-464

November 1989

(Randy B. Osborne, 1989

The author hereby grants to MIT permission to reproduce and
to distribute copies of this thesis document in whole or in part.

This research was supported in part by the Defense Advanced Research Projects
AgcrIcy and was monitored by the Office of Naval Research under contract numbers
NOO .4 -88-K-0125 a:d N00014-84-K-0099.

I'nA.m: I It~
SECURilfA" uJ~F~iSPC

4 PERFIRMING ORGANIZATION REPORT NUMBER(IP 5 MONITORING ORGANIZATION REPORT NUMBER(S)
N00014-83-K-0125

MIT/ LCS ITR-4 64 N00014-84-K-0099
6& NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a, NAME OF MONITORING ORGANIZATION

M*IT Lab for Computer Science (i plcbe Office rnE Naval Research/Dept. of ilavyi

6C. ADORESS (City, State. and ZIP Code) 7b, ADDRESS (City. State, and ZIP Code)

545 Technology Square Informiation Systems Pro~gram
Cambridge, N1A 02139 Arlington, VA 22217

Ba, NAME OF FUNDING# SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I(if applicable)
DARPA/ DOD I________ _______________________

8c. ADDRESS (City, St ate, and ZIP Code) 10, SOURCE OF FUNDING NUMBERS
Bd.PROGRAM PROJECT jTASK WORK UNIT

1400 ilson Bv.ELEMENT NO. NO. NO ACCESSION NO.
Arlington, VA 22217

11 TITLE (include Security Classification)
Speculative Computation in Multilisp

12, PERSONAL AUTHOR(S)
Osborne, Randy B.

13a. TYPE OF REPORT 13b TIME COVERED 114. DATE OF REPORT (Year. Month,Daly) IS5 PAGE COUNT
Technical I FROM TO I 9R9 ng.Qb& _ _

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18, SUBJECT TERMS (Continue on reverse if necessary and idenif~y by block number)
FIELD GROUP SUBGROUP speculative computation, optimistic computation, sponsors,

parallel Lisp, Multilisp, scheduling

* 19 ABSTRACT (Continue on reverse if necessary and identify by block number)

"f"' -! Welemonstrate,by experiments,that performing computations in parallel before their re-
* sults are known to be required can yield performance improvements over conventional ap-

proaches to parallel computing. We call such eager computation of expressions speculative
computation, as opposed to conventional mandatory computation that is used-in almost all
contemporary parallel programming languages and systems. The'Fvc ,major requirements

* for speculative computation areu-)li means to control computation to favor the most
promising computations, and 2.)'a means to abort computation and reclaim computation
resources.d

We investigate these requirements in the parallel symbolic language Multilisj~We)con-
dlude that we need the following support for speculative computation: for controlling cam- i
putation we need ordering (ranking of computations by their promise). demand transitivity, - 'lv~

20 OISTRIBUTONI/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CL.LSSIFICATION
C UNCLASSiFIEDIUNUITED 0 SAME AS RPT 0 OTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area, Codel [2 FFIE SYMBO0L
Judv L.ittle (617) 253-5894

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*uJs' co~nwl PfL-Iingr Ofl 1981-607-047
Unclassified

90 01 10 134

19. cn.

- and modularity, and for reclaiming computation we need explicit, revirsible reclamation
with automatic naming of descendants.

The main contribution of this work is a sponior model which proyides this support for
speculative computation in Multilisp. A sponsor is an agent which controls the alloca-
tion of resources to computation. This sponsor model hazidles control and reclamation of
computation in a single, elegant frameworks

We describe an implementation of this sponsor model and present performance results
for several applications of speculative computation. The results 1) demonstrate the im-

portance of aborting useless comput.tion, 2) demonstrate the importance of controlling
computation, and 3) provide experimental evidence of the benefit and power of our sponsor
model and support for speculative computation. Our support for speculative computation
adds expressive power to Multilisp, with the ability to control computation, and also adds
computational power, with significant performance improvements - we observed as much
as 26-fold speedup.

We also discuss the optimal scheduling of speculative computation and present omr"
new results for optimal scheduling.in don *simple cases. 0 , ' ,

\ /

DIIC TAB 1
Unannounced 3
Justifloation . .

Availability Codes
Avail and/or

Diat Special

2

Speculative Coriputation In Multllsp
by

Randy Brent Osborne

Submitted to the Department of Electrical Engineering and Computer Science
on November 6, 1989, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

We demonstrate by experiments that performing computations in parallel before their re-
sults are known to be required can yield performance improvements over conventional ap-
proaches to parallel computing. We call such eager computation of expressions speculative
computation , as opposed to conventional mindatory computation that is used in almost all
contemporary parallel programming languages and systems. The two major requirements
for speculative computation are: 1) a means to control computation to favor the most
promising computations and 2) a means to abort computation and reclaim computation
resources.

We investigate these requirements in the parallel symbolic language Multilisp. We con-
clude that we need the following support for speculative computation: for controlling com-
putation we need ordering (ranking of computations by their promise), demand transitivity,
and modularity, and for reclaiming computation we need explicit, reversible reclamation
with automatic naming of descendants.

The main contribution of this work is a sponsor model which provides this support for
speculative computation in Multilisp. A sponsor is an agent which controls the alloca-
tion of resources to computation. This sponsor model handles control and reclamation of
computation in a single, elegant framework.

We describe an implementation of this sponsor model and present performance results
for several applications of speculative computation. The results 1) demonstrate the im-
portance of aborting useless computation, 2) demoustrate the importance of controlling
computation, and 3) provide experimental evidence cf the benefit and power of our sponsor
model and support for speculative computation. Our support for speculative computation
adds expressive power to Multilisp, with the ability to control computation, and also adds
computational power, with significant performance improvements - we observed as much
as 26-fold speedup.

We also discuss the optimal scheduling of speculative computation and present some
new results for optimal scheduling in some simple cases.

Keywords: speculative computation, optimistic computation, sponsors, parallel Lisp,
Multilisp, scheduling

Thesis Supervisor: Robert H. Halstead, Jr.
Title: Research Affiliate, Laboratory for Computer Science

3

4

Acknowledgments

I would like to thank the following people:

Bert Ialstead - for being such a great thesis supervisor and terrific person. Throughout

this thesis research, Bert served es a sounding board for my ideas, contributed wise sugges-

tions and insightful comments, and provided encouragement. Hie guidance and suggestions

have contributed greatly to tO'a thesis.

Dave Gifford and Rishiyur Nikhil .- for their contributions, as thesis readers, to this final

document.

Laura Bagnall Linden - for ParVis, a program visualization tool which I used very heavily

during the experimental part of this thesis work. Laura's ParVis system provided a means to

see what was happening (and what was not happening) with the scheduling of speculative

tasks and thus I did not have to rely on inaccurate inferences. This information was a

tremendous assirtance in understanding the reasons for an application's performance and

improving its performance.

Hitoshi Takagi - for his patience in helping me learn a little Japanese and his company as

my officemate during the year of the most substantial work on my thesis.

Juan Loaiza - for many informative discussions while we shared an office and for his help

in understanding the original Multilisp implementation.

Ingmar Vuong - for interesting discussions about scheduling theory.

Dan Nussbaum - for helping to keep the Concert Multiprocessor and its software working

(as long as it did). His efforts are greatly appreciated.

My wife Kathrin - for her patience, support, and love during my years as a student at

M.I.T.

6

7

To my daughter Charlotte Anne

8

9

Prologue: A need for speculation

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowh

Then took the other, as just as fair,
And having perhaps the better claim

from The Road Not Taken by Robert Frost

10

Contents

1 Introduction 23

1.1 Definitions .. 24

1.1.1 Speculative Computation 24

1.1.2 Optimistic Computation 28

1.2 Examples ... 28

1.2.1 Parallel search 2

1.2.2 Branch prediction: parallel if 29

1.2.3 Producer-consumer parallelism: the Boyer Benchmark 30

1.2.4 Ordering: the traveling salesman problem 30

1.2.5 Precomputing streams 31

1.2.6 ,Other examples 31

1.3 Potential of Speculative Computation 32

1.4 Multilisp .. 33

1.4.1 Parallelism constructs 33

1.4.2 Scheduling 34

1.4.3 Side-effects 35

1.4.4 Task touching 35

1.4.5 Task terminology 35

1.5 Goals ... 36

1.6 Preview .. 37

11

12 CONTENTS

2 Main problems 39

2.1 Controlling Computation 39

2.2 Reclaiming Computation 42

2.2.1 Computation reclamation methods 43

2.2.2 Problems with computation reclamation 46

2.2.3 Summary 47

2.3 Sidc-effects 48

2.4 Errors and Exception Handling 50

2.5 Summary 50

3 11elated Work 51

3.1 Sponsors .. 51

3.2 Burton's Work .. 51

3.3 DAPS ... 53

3.4 MultiScheme ... 53

3.5 Qlisp .. 55

3.6 PaiLisp. .. 58

3.7 Speculative Computation in Dataflow 60

3.8 Parallel Logic Languages 63

3.9 Summary ... 65

4 Approach 67

4.1 Controlling Computation 67

4.2 Reclaiming Computation 68

4.2.1 Implicit reclamation at the system level 68

4.2.2 Explicit reclamation at the system level 72

4.3 Side-effects .. 73

4.4 Errors and Exception Handling 74

4.5 Summary ... 74

CONTENTS 13

5 A Model for Speculative Computation 77

5.1 The General Sponsor Model 78

5.1.1 Sponsor types 78

5.1.2 Sponsor networks 79

5.1.3 Attribute propagation 81

5.2 The Special Sponsor Model 82

5.2.1 Combining-rules 82

5.2.2 Max combining-rule 84

5.2.3 Combining-rules for other attributes 85

5.3 Computation Reclamation and Side-eftects 86

5.4 Groups 86

5.4.1 Ordering space management 87

5.4.2 Sponsorship management 87

5.4.3 Interaction management 89

5.4.4 Groups as black boxes 90

5.4.5 Non-root group interaction 91

5.4.6 Partial results 95

5.5 Summary 96

6 The Touching Model 97

6.1 The Touching Modde 97

6.1.1 Priority propagation 98

6.1.2 Computation reclamation 101

6.1.3 Priorities 102

6.2 Language Features 102

6.3 Deficiencies .. 104

6.4 Extensions ... 107

6.4.1 Controller sponsors 107

6.4.2 Resource attributes 107

14 CONTENTS

6.4.3 Priority ranges 107

6.4.4 Lazy priority propagation 109

6.5 Summary 109

7 Slde-effects 111

7.1 The Synchronization Problem 1

7.2 Solution Outline

7.2.1 Philosophy of solution 112

7.2.2 Roll-forward solutions 113

7.3 Examples 114

7.3.1 Locks 114

7.3.2 Placeholders 116

7.3.3 Semaphores 118

7.3.4 Other types of side-effects 126

7.4 Solutions 126

7.4.1 Non-preemptable regions 126

7.4.2 Sponsors 127

7.4.3 Placeholders 127

7.4.4 Semaphores 129

7.5 Summary .. 140

8 Applications 141

8.1 Por and Pand .. 141

8.1.1 Requirements 142

8.1.2 Mandatory por 142

8.1.3 Speculative por: version 1 145

8.1.4 Issues with por in a speculative environment 147

8.1.5 Speculative por: version 2 149

8.1.6 Speculative por: version 3 151

CONT1ENTS 15

8.1.7 Measurements 153

8.1.8 Generalizations 154

8.2 Tree Equal 15

8.3 -ycin 163

8.4 Bc.jp r Benchmark . 173

8.5 Tho Traveling Salesman Problem 181

8.6 Eight-puzzle Came 189

8.7 Summary........... 196

8.7.1 Examples 196

8.7.2 Benefits 197

8.7.3 Issues .. 197

9 Scheduling 201

9.1 The Scheduling Problem 202

9.1.1 Terminology 202

9.1.2 Scheduling problem formulation 203

9.2 Parallel Branch Scheduling 204

9.2.1 pi 205

9.2.2 pbranch 206

9.2.3 Preemption and rates 210

9.2.4 Summary 211

9.3 por/pand Scheduling 211

9.3.1 One processor 212

9.3.2 More than one processor 214

9.3.3 Preemption and rates 217

9.3.4 Zurmary 217

9.4 Nested Computations 218

9.5 Scheduler Capabilities 220

9.6 Summary .. 221

16 CONTENTS

10 Implementation Details 223

10.1 Speculative Ta.sks 223

10.2 Preemptive Scheduling....... 225

10.3 Priority Propagation 229

10.4 Staying 230

10.5 Performance 235

10.6 Optimizations 236

10.7 Summary 236

11 Conclusions and Future Work 239

11.1 Conclusions 239

11.1.1 Probemnr and limitations 242

11.2 Future Work ... 244

11.2.1 Theory of speculative computation 244

11.2.2 Practice of speculative computation 244

11.3 Closing Comment 245

A Language Features 247

A.1 Task and future creation and manipulation 247

A.2 Groups ... 248

A.3 Staying and priority manipulation 248

A.4 Clases .. 249

A.5 Semaphores ... 249

A.6 Status manipulation 250

B Definitions of por and pand 251

C ParVis 253

Bibliography 257

List of Figures

1.1 An example Multilisp Fagment 34

1.2 Task touching 36

5.1 por with a controller sponsor 79

5 9, A. sponsoz network 80

5.3 Touch cycle with addition combining-rule 84

5.4 Unifbrm translation of group ordering 88

5.5 An example of pot withg roups 89

5.6 Two pors sharing a dsjun 90

5.7 Non-root touch interaction 91

5.8 Non-root touch interaction 92

5.9 Group splicing .. 94

6.1 Non-termination with max combining-rule 100

6.2 Intergroup touching in presence of staying 106

6.3 Ordering with priority ranges 108

7.1 A simple spin-lock 115

7.2 A simple spin-lock with a "delay device 116

7.3 A placeholder example with one determiner 117

7.4 Placeholder example with "delay device" variation 117

7.5 A placeholder example with multiple potential determiners 118

7.6 A solution to the readers and writers problem 120

17

18 LIST OF FIGURES

7.7 A solution to a producer-consumer problem 122

7.8 Simulating monitor M with binary semaphores 124

7.9 State diagram of monitor M simulation 125

7.10 Non-preemptable spin-lock. 127

7.11 Solution to nultiple potential determiners problem 128

7.12 A better solution to the readers and writers problem 133

7.13 A user interface for the readers and writers problem 134

7.14 A better solution to the producer-consumer problem 136

7.15 Better solution for simulating a monitor with binary semaphores 139

8.1 por implemented with mandatory tasks 144

8.2 per implemented with speculative tasks; version I 146

8.3 por implemented with speculative tasks; vetsion 2 150

8.4 por implemented with speculative tasks; version 3 152

8.5 Sequential version of tree equal 155

8.6 Eager version of tree equal 156

8.7 Consecutive invocations of etree-equal? 158

8.8 Naive parallel version of tree equal 159

8.9 Checking version of tree equal 160

8.10 Speculative version of tree equal 161

8.11 Naive parallel and 165

8.12 "Delay-device" solution to locking problem in Emycin 166

8.13 Paradelism profile with sequential znd 168

8.14 Parallelism profile with naive pand 168

8.15 Parallelism profile with mandatory pand 169

8.16 Parallelism profile with pancd version 2 169

8.17 Parallelism profile for pand version 2 without staying 170

8.18 Expanding a candidate node in qtrav 182

8.19 Expanding a candidate node in stray 184

LIST OF FIGURES 19

8.20 Execution time of Traveling Salesman Problem 187

8.21 Sequential version of Eight-puzzle 100

8.22 Mandatory version of Eight-puzzle 192

8.23 Speculative (spec) version of Eight-puzzle 193

10.1 A class sponsor and sponsored tasks . . * * 231

10.2 Example tasknode tree 232

C.1 An example ParVis display 254

20 LIST OF FIGURES

List of Tables

2.1 Characteristics of reclamation methods 46

2.2 Problems with reclamation methods 48

6.1 Reclamation terminology 102

8.1 por operation times 153

8.2 por overhead on Concert Multiprocessor 154

8.3 Execution time of tree equal versions on various trees 157

8.4 Executlon time of tree equal versions on various trees 162

8.5 Time to perform five consecutive comparisons of treeO and treel 162

8.6 Emycin inferencing times for almandine and peridot inputs 167

8.7 Characteristics of Emycin with almandine and peridot inputs 168

8.8 Emycin inferencing times with artificial delay 171

8.9 Speedup of Emycin versions 171

8.10 Emycin inferencing times with artificial dataset 172

8.11 Boyer test cases 176

8.12 Execution time of Boyer Benchmark 176

8.13 Ratio of eager and lazy execution times 178

8.14 Rewrite statistics for the three input test cases 179

8.15 Execution time of traveling salesman problem 186

8.16 The Eight-puzzle: a starting position 189

8.17 Eight-puzzle solution 190

8.18 boardi8 194

21

22 LIST OF TABLES

8.19 Eight-puzzle excution time*.......... 105

8.20OCharacteristics ofeach application 191

8.21 Contributions of each application . 198

Chapter I

Introduction

The future construct of Multilisp has proven very versatile and successful for achiz'ving
parallelism in symbolic computation [IIals86d]. However, experience with parallel symbolic
computation has led to the recognition that 'speculative" styles of computation may be
more effective for certain applications, notably searches, than the 'mandatory" style of
computation obtained using iuture [11als85,Hals86c,Hals8Gdj. Speculative computation is
eager evaluation where the result(s) of the evaluation may be unnecessary. Speculative
computation involves a gamble whereby one trades additional, possibly unnecessary, com-
putation for potentially faster execution.

Speculative computation has two requirements. First, because in general compu.tion
resources are limited, we would like to reclaim the resources -- processor cycles, memory
cells, and machine resources - devoted to unnecessary computation. Thus speculative com-
putation requires the ability to "abort I computation and reclaim computation resources.

The second requirement follows naturally from the first, assuming that computation
resources are limited: given that some of the computation may be unnecessary, we would like
to arrange the use of resources to favor the most promising computations. Thus speculative
computation requires the ability to control computation resources.

We investigate these requirements in this thesis and present a model for speculative
computation in Multilisp. This model should furnish an archetype for speculative compu-
tation in other parallel languages. We describe an implementation of this model and present
performance results for several applications of speculative computation.

The remainder of this introduction is divided into sections which give a detailed defi-
nition of speculative computation and related terms (Section 1.1), present some examples
of speculative computation (1.2), discuss the potential of speculative computation (Section
1.3), introduce Multilisp (Section 1.4), describe our goals and approach in (Section 1.5),
and finally present an overview of the remainder of the thesis.

As we discuss later, we do not necessarily have to kill unnecessary computation.

23

24 CHAPTER 1. INTRODUCTION

1.1 Definitions

1.1.1 Speculative Computation

Given some definition of computation appropriate to the computational paradigm at hand,
we classify computation into three groups:

1. computation known to be required,

2. computation known not to be required, and

3. computation not known to be required or not required.

This classification is with respect to a given state of knowledge at a given time and a given
specification of the program in which the computation is embedded. The state incorporates
perfect knowledge about the past and whatever information may be known about the future,
such as input data and analysis of the program. The knowledge about the future may be less
than the total available due to incomplete analysis. (Of course, even the total knowledge
available is necessarily incomplete due to external nondeterminism (future inputs may be
unknown), internal nondeterminism in the program, and theoretical limitations, such as
decidability, on program analysis.) The program specification is a set of conditions on
the results and side-effects produced by the program (and perhaps also conditions on the
inputs and the execution environment) such that the program is considered correct if every
execution of the program (subject to the input and environment conditions) is guaranteed
to meet these conditions. We use the program specification to define what it means for
a computation to be required or not required. A computation is required (i.e. in group
1) if, with the given state of knowledge, the computation is definitely always necessary to
meet the program specification. Likewise, a computation is not required (i.e. in group 2)
if, with the given state of knowledge, the computation is definitely not ever necessary to
meet the program specification. Finally, a computation is in group 3 if, with a given state
of knowledge, the computation could either be necessary or unnecessary. In this case, the
given state contains insufficient information to determine if the computation is required or
not required.

As a program executes, the state of knowledge increases. Thus during program execution
the above classification constitutes a succession of improving approximations with time,
starting with some a priori designations and becoming further refined, as time goes on and
more information becomes available, and ending with all computation divided into groups
1 and 22, assuming the computation terminates.3

2 Thls Is not always true: even after all computation terminates, some (past) computation may remain In
group 3 because it still may not be clear if the computation was necessary or unnecessary. If the computation
is not performed the program may execute In such a way that It could either meet the specification or not
depending on the nondeterminism realized.

3However, It may only be necessary for some of the computation in a program to terminate in order to
classify all the computation in the program.

1.1. DEFINITIONS 25

Computation in group 1, i.e. computation that is known to be required, is relevant
computation. Computation in group 2, i.e. computation that is known not to be required,
is Irrelevant computation. Computation in group 3 is speculative computation. We also
refer to relevant computation as mandatory computation. Thus a speculative computation
may become mandatory during its course of computation, as more information becomes
available to indicate that it is necessary. For instance, a mandatory computation may
select a particular speculative c:omputation from among several; that compuitation becomes
necessary and the rest become unnecessary. Or, further input data or cont: -I' information
obtained with time may indicate that a speculative computation is actually Ttn,ssary.

Lazy computation is computation that is started when the computation is actually
required, that is, at the latest possible time. By contrast, eager computation is compu-
tation that is started early, before it is required, but with certainty that it will be required. 4

Speculative computation is computation that is started before it is required, like eager com-
putation, but without any assurance that it will be required later, unlike eager computation.

If all computation is functional, the classification of computation is simplified. In this
case, a demand-driven interpreter evaluating a program defines the specification of that
program. Thus, whether or not a computation is required reduces to whether or not a
demand-driven interpreter ever (irrevocably) demands the computation. Also, the set of
computations demanded by a demand-driven interpreter up to time t constitute the minimal
state of knowledge at time t.

Consider first a deterministic and purely functional program P. In this case a compu-
tation C in P is relevant if a demand-driven interpreter evaluating P either will demand
C (based on the state of knowledge) or does demand G. Computation C is irrelevant if a
demand-driven interpreter will never demand C. Finally, computation C is speculative if we
cannot determine, based on the given state of knowledge, whether or not a demand-driven
interpreter will ever demand C.

In the case of a nondeterministic and functional program P we have to be more care-
ful since demanding the operand of a nondeterministic operator may not imply that the
operand is required. To handle nondeterministic operators like parallel or (described in Sec-
tion 1.2.1), we introduce the notion of a choice time. First we define a choice computation
to be any computation which a given nondeterministic operator may choose. The choice
time is then the time at which the nondeterministic operator chooses amongst the choice
computations. Prior to the choice time, the demand-driven interpreter provisionally de-
mands all choice computations. (With a demand-driven interpreter, the choice time always
occurs after the interpreter demands the result of the nondeterministic operator.) To avoid
problems with non-termination, we assume a fair demand-driven interpreter that provision-
ally demands all choice computations equally.5 At the choice time, this fair demand-driven
interpreter irrevocably demands the chosen computation and "undemands" all the non-
chosen cumputations. The chosen computation is, of course, required and the non-chosen

4This is not the universal meaning of eager computation - some people use it to mean speculative
computation.

aThus the classification of computation is with respect to this fair demand-driven interpreter.

26 CIIAPTER 1. INTRODUCTION

computations, provisionally demanded and then undemanded, are not required.

Thus for a nondeterministic and functional program P we amend our definitions as fol-
lows. Computation C in P is relevant if a fair demand-driven interpreter evaluating P eithoe
will or does demand C irrevocably (i.e. never undemands C). Computation C is irrelevant
if a fair demand-driven interpreter will never demand C irrevocably. Fihally, computation
C is speculative if we cannot determine, based on the given state of knowledge, whether or
not a demand-driven interpreter w.ll ever demand C irrevocably. These definitions reduce
to the previous definitions for the deterministic case with the following addition for nonde-
terministic operators: Prior to the choice time of a nondeterministic operator all the choice
computations are speculative and subsequent to the choice time all the non-chosen compu-
tations are irrelevant. If the chosen computation is part of another computation, the chosen
computation's relevance is determined in the same way. Otherwise, its relevance depends,
as in the deterministic case, on whether it is demanded by a demand-driven interpreter.

To help illustrate these definitions, consider the following example. Assume that we
have choice(C .C 2 ,C 3), where choice is a nondeterministic operator. Then Ci, C2, and
C3 are the choice computations. Let R be the current relevance (relevant, irrelevant, or
speculative) classification of the choice expression. Then, prior to the choice time, at which
time the choice operator selects one of the Ci (w, t.-nume only one is selected), the demand-
driven interpreter provisionally demands all the C and all tile C are speculative, unless R is
irrelevant, in which case all the C, are irrelevant too. When the choice operator selects, say,
Ci, the demand-driven interpreter "undemands" all Ci for i 96 j and irrevocably demands
C1 if necessary (i.e. if C1 is not fully computed). Then all Ci for i 0 j are irrelevant,
regardless of R, and Ci has relevance R. Or put another way, the selected Computation Ci
is conditionally rdevant with respect to the choice expression.

With side-effects, a demand-driven interpreter is not sufficient to define relevance. Com-
putation not explicitly demanded by such an interpieter may be required, and hence rele-
vant, for the side-effects that it may perform, such as writing a sharedi variable, or releasing
a lock or semaphore. Thus with side-effects we muot use the general classification given
earlier. However, side-effects raise some tricky issues with this classificatin (such as how
do we determine if a given computation with side-effects is necessary to meet the program
specification). We will not pursue these issues here since their resolution does not add sub-
stantially to the understanding of speculative computation. This does not mean that we
av1oid side-effects in the sequel: the principles of speculative computation may certainly be
exploited without resolving these issues. Furthermore, there are many useful applications
involving side-effects for which these issues do not arise.

We have given a temporal classification of computation. Sometimes we want to classify
computation after a program terminates, in a post mortem fashion. In such cases, we
are interested in questions such as was computation C speculative or not? This is an ill-
formed question, though, since our classification of C depends on our viewpoint, which
may change with time and program history. Initially C may appear to be speculative but
later information may reveal it to be relevant or irrelevant. Thus to answer this within our
framework, we need to specify a state, since the relevance of a computation is with respect
to a given state.

1.1. DEFINITIONS 27

Note that with our definitions, speculative computation may exist in conventional pro.
grams and even in sequential programs.

Classiflcatlona of Speculative Computation

There are two orthogonal ways of classifying speculative computation. The first classifica-
tion is based on determinacy. Speculative computation is:

1. deterministic if the semantics of its application is deterministic, i.e. if the result is
a function of data and control dependences only, and

2. nondeterminlstic if the semantics of its application is nondeterministic, i.e. if the
result is a function of scheduling behavior in addition to the data and control depen-
dences. An example of nondeterministic speculative computation is the concurrent
application of several solution strategies where we are only interested in the first strat-
egy to succeed. We call such a race amongst alternatives in which any rlternative will
suffice 'first-of" speculative computation.

The second classification is based on the way in which resources are used for speculation.
We distinguish three flavors:

1. multiple-approach speculative computation

In this flavor, the speculation is in pursuing multiple approaches simultaneously, as
in first-of speculative computation, where not all the approaches are necessary (but
at least one is). A dominant charecteristic of this flavor is aborting irrelevant compu-
tation, i.e. aborting unnecessary approaches. Multliple-approach speculative compu-
tation is, perhaps, the most obvidus form of speculative computation.

2. order-based speculative computation

In this flavor, the speculation is in the order in which the computations are per-
formed. Not all the computations are necessary so this order is important. There
may be an optimal order but this may not ha known a priori. Thus the goal is to
use an order which has good average behavior (as in minimum average completion
time). Order-based speculative computation is invariably resource constrained: the
order matters because there are insufficient resources to perform all computations
simultaneously. Order-based speculative computation is not restricted to multipro-
cessors. For example, the execution of a branch and bound algorithm on a sequential
computer is an example of order-based speculative computation (cf. the example in
Section 8.5). Lastly, order-based speculative computation typically does not involve
any aborting of computation.

3. precomputing speculative computation

In this flavor, the speculation is in precomputing some quantity for possible future use.
Unlike in multiple-approach speculative computation, where at least one approach is

28 CIhAPTER 1. INTRODUCTION

necessary, precomputation is not necessarily required. Also, unlike multiple-approach
speculative computation, precomputing speculative computation computation often
does not involve any aborting of computation (because the precomputation terminates
before it is known if the result is required). Precomputing speculative computation is
already familiar in sequential computing as caching.

In practice most speculative computation involves a mix of these three flavors, especially
multiple-appioach and order-based speculative computation. Indeed, ordering becomes
important as soon as there are insufficient resources.

.1.2 Optimistic Computation

Optimistic computation can mean the same thing as speculative computation, though per-
haps with a connotation suggesting more "success (i.e. a higher ratio of nect.uary to unnec-
esary computation) than with speculative computation. However, most people (e.g. in con.
currency control [Ilerlihy,Kung), in simulation [Jeffer), in fault tolerance [Strom,Johimon),
and in software maintenance [Bubenik)) use optimistic computation to mean a subset of
deterministic speculative computation in which there is a particular concern to undo all
side-effecta ever performed by an aborted computation, so it appears that the computa-
tion never occurred. We call this "atomic (or indivisible) semantics" - all or none oT
the side-effects persist. That is, side-effects obey a transaction or encapsulation (Bubeniki
model.

Our notion of speculative computation is broader than the usual notion of optimistic
computation. Our notion covers nondeterminism and certain styles of data precomputation
(e.g. speculative streams which we mention in Section 1.2.5) which do not fit into the all-
or-nothing model. The key distinction of our approach is the inclusion of both data and
control dependences to determine if a computation is necessary, rather than just control
dependences (as in [13ubenikj). We feel this leads to a finer-grained approach to speculative
computation.

1.2 Examples

We present five quite different examples of speculative computation which we use to motivate
discussion in the rest of the thesis.

1.2.1 Parallel search

Search is a particularly rich domain for speculative computation. Consider the problem of
searching the subspaces S1, 52, ... , Sn for a target. To perform this search both quickly and
eficiently, we want to perform the subspace searches concurrently (subject to availability of
machine resoirces) and terminate all remaining subspace searches when we find the target,

1.2. EXAMPLES 29

to avoid wasting machine resources. That is, we want both parallelism and control over the
parallelism. These subspace searches are examples of speculative computation.

Without language support for speculative computation, as in conventional Multilisp,
we must either abandon the goal of terminating useless subsearches or we must have each
subsearch explicitly check for termination. The former is inefficient and the latter can be
awkward and suffer from lack of expressiveness (as we discuss later). Thus the benefits of
support for speculative computation are efficiency and ease of performing parallel search.

These benefits are important because of the importance of parallel search in symbolic
computation. The A.I. domain, for example, with its heavy emphasis on search techniques,
seems particularly attractive for parallel search with speculative computation.

Probably the simplest examples of parallel search are parallel or and and, which we call
por and pand respectively. (por E, 2 ... E,) returns the value of the A- that first evalu-
ates to a non-nil value and nil if all the Ei evaluate to nil. In contrast, (pand E, E2 ... &.)

returns nil when any Ei evaluates to nil and true if all the A evaluate to non-nil. (We define
por and pand more precisely in Appendix B.) In both cases, any remaining A- evaluations
may be aborted after a result is returned. These two nondeterministic operators represent
perhaps the most important potential application of sreculative computation because of
the ubiquity of or and and.

Parallel search, in general, is an example of multiple-approach speculative computation
and por and pand, in particular, are examples of nondeterministic speculative computation.

1.2.2 Branch prediction: parallel if

A good example of branch prediction is parallel if. Suppose pred in the expression

(if pred consequcnt alternate)

takes a long time to evaluate. Then we might like to evaluate pred, consequent, and alternate
concurrently to reduce the total execution time. If pred evaluates to true, we accept the re-
sult of evaluating consequent and abort the evaluation of alternate (if it is still in progress). If
pred evaluates to false, we accept alternate and abort consequent.6 Precomputing consequent
and alternate is an example of deterministic, multiple-approach speculative computation.

This branch predicon example demonstrates another benefit of speculative styles of
computation: the relaxation of synchronization constraints to reduce the critical path
length. By relaxing the synchronization constraints, we mean relaxing the constraints on
when computation is actually performed, while still obeying the overall data and control
constraints. As with parallel search, the objective is to reduce the critical path length
efficiently.

"And if conuequent and alternate evaluate to the same value, we could abort pred.

30 CHAPTER 1. INTRODUCTION

1.2.3 Producer-consumer parallelism: the Boyer fenclimark

Written as a parallel Multilisp program, the Boyer Benchmark [Gabr85] is an example of
producer-consumer parallelism with an interesting twist. Given an input expression, the
Boyer Benchmark determines whether the expression is a tautology based on a database
of rewrite rules. The producer successively rewrites the input expression according to the
rewrite rules to obtain an if-then-else tree. The consumer, which operates concurrently
with the producer, traverses this if-then-else tree, checking for consistency between each
predicate and its consequent and alternate. The interesting twist is that not all the rewrites
are necessarily required by the tautology checker. For example, the rewrite rule for and is
(and a b) -t (if a (if b Nt Wf) #f). Ifa happens to be #t, there is no need to rewrite
expression b. However, the producer does not know this until the consumer terminates
without demanding this rewrite. (a may not be so simple, or a may be shared by some
other expression.)

In an attempt to reduce the execution time we could perform all rewrites eagerly, gam-
bling (in a form of branch prediction) that they will be required. However, this application
of speculative computation fails if there are too few processor resources (see Section 8.4)
because the machine becomes saturated with speculative rewrites and swamps out the tau-
tology checker computation. That is, unnecessary rewrites use resources that otherwise
would be devoted to necessary rewrites and tautology checking and thus lengthen the exe-
cution time. To counteract this problem, we could perform all rewrites lazily but then the
execution time is long due to insufficient parallelism.

4To solve this problem, we need a way to order the allocation of resources to speculative
activities according to their relative promise. For Boyer two ordering levels are sufficient:
one for the tautology checker (i.e. consumer) and one for the rewrites (i.e producer) whereby
the consumer can preempt the producer for processor resources. However, we also need
some way to promote a rewrite to the consumer level when we find it necessary. That is,
we need what we call dynamic ordering. With such static and dynamic ordering, the Boyer
Benchmark is an example of order-based speculative computation.

(There is also the issue of aborting all the useles rewrites when the tautology checker
terminates, but aborting has already received adequate mention.)

1.2.4 Ordering: the traveling salesman problem

In the previous example we saw that ordering of resources for speculative activities can be
very important because the activities have different promises of being required and not all
of the activities are necessarily required. This example takes ordering to its extremc.

Consider a branch and bound algorithm to solve the traveling salesman problem. We
would like to expand nodes representing partial tours in parallel according to some heuristic
so we can focus our machine resources on the most promising partial tours first. The faster
we can obtain a complete tour and the better the quality of this tour, the more pruning we
can do, thus decreasing the total execution time. One way to achieve our desired ordering is

1.2. EXAMPLES

vic &n explicit priority queue (programmed in the language). This is an awkward so.i,,a:
A better solution is to extend the notion of ordering - which we already r: .,
necosary for cases like the previous example - to an arbitrary infinitum of orde"iii. hi
both the Boyer Benchmark and the traveling salesman problem the fundamental pr,bfm
N the s ,-ne: ordering the allocation of resources to activities according to their ,
prmw.10. Thus we should uso tne same in:,,anism to solve this problem in both ca.i.

to re.-z tion in the traveling salesman problem is in the order in which resou.ces %vc
alhac."ittii to A4k n UPn-n n, i.e. it is order-based speculative computation. This noto
oi ordertng : the key x, ,a -missing in most other approaches to speculative computattur
(as d,,d in Chapter '#J. Aborting exists in the traveling salesman problem, but ;4 is
implicit aborting" a node citecks the cost of the node with respect to the current best cost

&l a cc.mplete touc and simply terminates if the cost exceeds the best cost.

1.2.5 Precxnputly, q ea

A stream is a pos.4bly in.'nita list of objects [Abelson]. The illusion of infinity is maintained
by generating the list lazily: elements are added to the tail of the list incrementally as
demanded (thus adzn.Jing the tail). The idea in precomputing a stream is to extend the
tall of the stream, by computing several elements ahead, before these elements are actually
demanded. This idea is a form of branch prediction -- we hope to reduce the critical path by
doing a certain -.mount of precomputing. We call a stream with such element precomputing
a speculativestream to underscore that it is an example of (precomputing-based) speculative
computation.

The easiest way to control a speculative stream is to spe:ify the number of elements to
precompute. This control is inadequate in general, though, since the amount of computation
required per element could be non-uniform - it could increase exponentially for instance.
To ensure adequate control over the effort we devote to precomputing stream elements, we
need to be able.to control the duration for which we precompute stream elements.

1.2.6 Other examples

We list some other applications of speculative computation below.

" Pattern matching - Parallel search could be used to match patterns.

" Rule-based interpreters - A rule-based interpreter could be realized as a parallel
search on a database of rules. [Miller) explored such an example.

" Symbolic integration - Alternate methods for integration like a fast heuristic routine
for common special cases and the Risch algorithm, a general but slow procedure, could
be tried simultaneously. Symbolic algebra in general seems like a rich application area
for speculative computation [Watt].

32 CHAPTER 1. INTRODUCTION

" Hypothesize and test - This popular A.I. paradigm could be parallelized to gener-
ate and test many hypotheses simultaneously and terminate upon finding the first
successful hypothesis.

" Alpha-beta pruning - Many positions could be explored simultaneously while main-
taining the sequential flavor that is so important to minimize the total amount of
work.

" Simulated annealing - Several candidates for the next state could be investigated
simultaneously, thus reducing the critical path if the chosen candidate is rejected. An
alternative idea proposed by [Chamber) is to precompute all possible accept/reject
branches simultaneously (to a given depth). This amounts to "pipalining" the se-
quential simulated annealing algorithm by massive branch prediction.7

" Speculative convergence - This is a form of branch prediction suggested by [Soley)
in which loop iterates greater than i proceed concurrently with testing loop iterate i
for termination. This speculation avoids undue serialization of the iterations with the
termination test.

1.3 Potential of Speculative Computation

The central idea behind neculative styles of computation is to use excess resources to reduce
the average execution ;imt. As the examples in the previous section illustrate, the key to
realizing this idea is to relax synchronization constraints, thereby decreasing the critical path
length, by using excess resources and controlling the order of computation. In decreasing
the critical path, it is important to use these excess resources efficiently. Inefficient use of
excess resources may preclude future opportunities for speculative computation.

Speculative computation offers the potential to turn excess resources into possibly faster
execution. In other words, speculative computation can lead to the more efficient use of
machine resourtzs. With speculative computation we are trying to exploit the narrow
ground between to lit .e mandatory computation and too much mandatory computate;on.
We are trying to fill this gap with speculative computation.

Efficient support for speculative computation will encourage a more aggressive exploita-
tion of parallelism. Such support will make it possible to extract parallelism from problems
thought to be either too expensive to parallelize or inherently sequential. Some problems
are too expensive to parallelize highly in the conventional framework because of poor con-
trol over resource use. For example, searches may be inefficient when highly parallelized
because it may be very difficult or impossible to kill unnecessary subsearches and allocate
resources to subsearches in relation to their promise. Other problems, such as simulated an-
nealing, are inherently sequential and are difficult to parallelize effectively in a conventional

"The Multiflow Trace used this branch prediction forma of speculative computation successfully at the
architecture level.

i ..f. Al U11I111, ISI'3

framework. lowever, speculative styles or computation allow one to follow the li.t-uential
flavor - but not all the sequential constraints - of quch applications while still exploiting
pnrMdlelism to speed execution.

1.4 Multilisp

Multilisp i6 a version or tho Scheme programming language extended with explicit J)hrhl-
lelism construcLs. Multilisp is based onl a shared memory paradigm and inchds side-elfects
- hence the explicit parallel n constructs JfIals85J. 'rha section atimmnarixsti the major dir.

fcrences or Multilisp from Scheme. Further information on Multilisp is available in jhllis8sJ
and ilals8Gbi and several papers Jllals$Gcllals87,lIals86dJ describe example applications.

J..4.1 Parallelisn constructs

The principal parallelism construct is future.

(future cxp) creates a new thread of computation to evaluate ezp and immediately
returns a placeholder for the result. This placeholder, or future object, may be manipulated
just as if it were the result of evaluating crp - that is conned into data structures, pased
to and from functions, etc. - unless or until it is an argument to a strict operation,
such as plus, which requires the value of each operand. When this happens, the thread
attempting the strict operation suspends until the placeholder is determined with the result
of evaluating exp.

WVe call a thread of computation a task. Tasks are conceptual entities below the language
level. When a task attempts a strict operation on a placeholder, we say that the task touches
the placeholder. If thle placeholder is undetermined, the task blocks on the placeholder, as
described above. Otherwise, the value is automatically (and implicitly) extracted from the
placeholder. All strict operations in Multilisp implicitly touch all their placeholder operands
to ensure that each such operand is determined. Thus join synchronization occurs implicitly
when the placeholder value is actually required. Multilisp also provides a construct to
explicitly touch its operand and effect join synchronization.

(touch exp) is n identity function which is strict in its argument. If ezp is a placeholder
touch touches the placeholder and returns the placeholder value (blocking if necessary).
Otherwise, touch simply returns exp.

Figure 1.1 displays an example fragment of Multilisp code. The future in line 1 creates
a new task to evaluate (too 2) and returns a placeholder for the eventual result of this
application, which is bound to x. Line 2 performs a non-strict operation on the placeholder,
consing a pair containing the placeholder and returning this pair. Lines 1 and 2 demonstrate
the power of Multilisp. The producer in line 1 and the rest of the computation, includ-
ing eventual consumers, can proceed concurrently. When a consumer actually requires the
producer's value represented by the placeholder, the necessary producer-consumer synchro.

34 CHAPTER 1. INTRODUCTION

(let ((x (future (too 2)))) ;1
(i y

(conXi 1) ;2
(+ x))) 3

Figure 1.I: An example Multilisp fragment

nization occurs implicitly as a part of the strict operation that actually requires the value.
In line 3 the consumer is the plus. Plus is a strict operation which requires the actual value
represented by the placoholder bound to x. Thus the task performing the plus operation
implicitly touches x and suspends until x is determined when the evaluation of (f oo 2)
compictes.

Whereas future is an eager construct that begins evaluation of its argument any time
after the task is created, delay is a lazy construct.

(delay cxp) creates a new task to evaluate tzp and immediately returns a placeholdee
for the result, like future. However, unlike future, delay does not begin evaluating czp,
i.e. executing the task, until the placeholder is touched.

Sometimes it is convenient to have a pleceholder without an associated task for write-

once synchronization, like the I-structures in the dataflow language Id [Nikhil].

(make-future) creates and returns an empty placeholder, i.e. future object.

(determine-future fuL czp) explicitly determines the undetermined future object fut
to exp and returns exp. Each task created by a future or delay ends with an implicit
determine-future. It is permissible, though not encouraged, to explicitly determine any
future object - even one with an associated task - with determine-tuture. It is an error
to (explicitly or implicitly) determine a future object more than once.

1.4.2 Scheduling

The task executing a future expression, such as (future exp), is called the parent task
and the task created to evaluate the argument expression exp is called the child task. A
processor which executes a future always pursues the child task after creating the child task
and future object, rather than the parent task. This is the unfair scheduling for resource
management discussed in [Hals85]. The construct dfuture is exactly like future except for
opposite scheduling of parent and child tasks: a processor which executes a dfuture always
continues the parent task after creating the child task and future object.

1.4. MULTILISP 35

1.4.3 Side-elects

Multilip includVs the usual collection of side-effect operations found in Scheme. To enforce
task synchronization (for correct operation in the presence of sid"-cffects) Multilisp provides
atomic operations and semaphores.

The following two atomic operations are extensions of the set-cxrl, (x= a or d) muta-
tors in Scheme.

(rplaca-eq pair ncw old) performs the following eq check vaid possible swap atomically:
If the car of pair is eq to old, the car of pair is replaced by new and pair is returned. If the
car of pair is not eq to old, nil is returned.

(rplacd-eq cell new old) performs the same eq check and possible swap as above atom-
ically, but based on the cdr of pair rather than the car.

(make-sema) makes and returns a free binary semaphore object.

(Wait-aea arema) makes the semaphore mena busy if mea was free. Otherwise, it
suspends and enqueues the executing task on the semaphore mers. wait-sema is Dijkstra's
classical P operation.

(aignal-sema ena) makes the semaphore aema free if no tasks are queued on the
semaphore. Otherwise, it dequeues and resumes one of the tasks enqueued on smea.
signal-ema is Dijkstra's classical V operation. The system tres to enforce first-come-
first-served (FCFS) ordering on semaphore requests, but this ordering is not guaranteed.

1.4.4 Task touching

Touching, as defined above, only occurs between tasks and placeholders, or future objects: a
task touches a future object. To ease the presentation in the rest of this thesis, we generalize
this notion of touching when the touchee future has an associated task. If a task A touches
task B's future object (i.e. the future object which task B determines with its result), we
say task A touches task B.

Figure 1.2 provides an example in the context of Figure 1.1. The circles represent tasks
and the rectangle represents the future object bound to x. Task B is evaluating (foo 2) and
will determine future object x with the result. Task A, meanwhile, is attempting to perform
the plus operation in line 3 of Figure 1.1. Task A touches future object x as signified by
the arrow from task A to the placeholder in Figure 1.2. Generalizing, we say that task A
touches task B.

1.4.5 Task terminology

For convenience in describing the implementation, we categorize tasks operationally as
mandatory or speculative. For now we loosely define mandatory and speculative tas:s

36 CHAPTER 1. INTRODUCTION

Figure 1.2: Task touching.

as tasks performing manatory and speculative computation respectively. NVe will give a
precise meaning to these terms in Chapter 6 when we describe the model we implemented.

1.5 Goals

Our goals in this thesis work were as follows:

1. Investigate the requirements or lpeculative computation in Multilisp applications.

2. Provide a model for speculative computation in Multilisp.

3. Provide support for speculative computation in Multilisp.

(a) Avoid incompatible changes to the existing Multilisp language definition, and in
particular, retain future. Since future has endured an important test of time
at the hands of many programmers (lIals86dJ, we believe it is a sound base.

(b) Minimize the impact of support for speculative computation on the performance
of traditional, mandatory computation.

4. Show examples illustrating the support for speculative computation and demonstrat-
ing the power gained by that support.

To achieve goal 3 we provide special support for speculative computation in Multilisp
in the language and in the implementation. This support expands the notion of "touching"
futures. This support is necessary for sufficient expressiveness and efficiency. For example,
as we already mentioned in 1.2.1, we need support for terminating speculative computation
to avoid the awkwardness and lack of expressiveness of explicit checking. This topic is a
major subject of Chapter 2.

In previous work we constructed a scheduler on top of Multilisp for experimenting with
speculative computation. This layered approach allowed more general control of compu-
tation than explicit checking, but was too inefficient. Since Multilisp provides no way to
control the execution of an arbitrary task, we were forced to install "checkpoint" calls

1.6. PREVIEW 37

which interacted with a user level scheduler at regular intervals in each task. Performing
the system scheduling in this manner proved to be prohibitively expensive. Furthermore,
this layered approach was still not sufficiently general: we were not able to model blocking
on undetermined future objects. Such blocking occurs implicitly in Multilisp and is not
accessible from the user level. This meant that any desired computation control could be
frustrated by unobservable task touching. Hence we need special support.

1.6 Preview

Chapter 2 dicusses the four main problems with speculative computation in an imperative
environment. Chapter 3 summarizes related work. Chapter 4 describes our approach to the
four main problems. Chapter 5 introduces our sponsor model for speculative computation
and Chapter 6 describes a particular subset of this model that we implemented, called
the "touching model". Chapter 7 considers solutions to the problems posed by side-effects
in the context of our touching model. Chapter 8 discusses in detail several applications
of speculative computation with performance results. Chapter 9 considers the optimal
scheduling problem for some simple cases. Chapter 10 describes implementation details,
such as the mechanism for aborting useless computation. Finally, Chapter 11 presents our
conclusions and thoughts for future research.

38

Chapter 2

Main problems

In this chapter we discuss the four main problems involved in supporting speculative com-
putation in Multilisp. We assume that computations potentially compete for: some limited
computation resources. (If this is not the case, all computation can be treated as mandatory
and speculative computation is moot.) Because these resources are limited, it is important
to use them efficiently. Therefore, in general we must control speculative computation and
reclaim irrelevant computation.

2.1 Controlling Computation

Because not all speculative computation is necessary, the order in which we allocate re-
sources to computation is important, as the Boyer Benchmark demonstrates. Further-
more, not all speculative computation is equal. Some computations may be more prcmising
than others, as the traveling salesman example demonstrates. Thus we want to allocate
resources to computation to favor the most promising computations. For instance, we
certainly want mandatory computation to preempt the resources utilized by speculative
computation. More generally, we want some sort of ordering of computation.

For concreteness in this chapter, we assume priorities for specifying this ordering. The
reader should view priorities in this chapter as a representative means of ordering. In
particular, any mention of priorities in this chapter applies as well to any other means of
specifying ordering.

Issue 1: Determining the relative promise, i.e. priority, of computations

In general, the programmer' must decide the relative promise of computations, as controlling
computation relies on meta-knowledge about a program's function, inputs, and purpose as

'Or some programmer, such as the systems programmer or the library programmer.

39

40 CHAPTER 2. MAIN PROBLEMS

well as its operating environment. The optimal assignment of priorities is a scheduling
problem which we mention in connection with Issue 4.

Issue 2: Interaction of computation

The promise of computations, i.e. priorities, must be transitive. Without this transitivity,
interaction of computation may subveet the desired ordering. For instance, suppose that
computation C, demands the result of (uncompleted) computation C2. If C1 's priority is
greater than C2's, then C1's progress is effectively that of the lower-priority C2, subverting
the desired ordering of C1 with respect to other computations.

Transitivity (of priorities) provides the dynamic ordering of resources to computation
that is so essential in the Boyer Benchmark.

Issue 3: Modularity

We need a way to preserve the functionality of a group of related speculative computations,
such as in the Boyer Benchmark and the traveling salesman problem, wherever the group
appears. We call this the modulariy principle: we should be able to embed any speculative
computation or group of speculative computations as subcomputation(s) within some larger
speculative computation. For example, we should be able to have the traveling salesman
problem as a disjunct in por while retaining both the desired ordering of the disjuncts with
respect to each other and the desired local ordering of the traveling salesman computations
with respect to each other.

To support this modularity, we want each 'module" to have a new, local priority space
relative to the parent priority. This allows modules to be nested in hierarchical fashion.

This modularity is important. It allows arbitrary nesting of speculative computation
with the assurance that local ordering relationships will be retained. This increases the
ease of programming and expressiveness. If all priorities occupy the same flat priority space
the lack of modularity can be quite troublesome. For example, if the traveling salesman
problem is a disjunct in a por, all the priorities in the traveling salesman problem must be
carefully adjusted so as not to interfere with the other disjuncts.

Issue 4: More complex control

Sometimes we need complex, dynamic control of computation. Consider por. We may
start with some a priori idea of the relative priority for the disjuncts but this assignment
may change as information is garnered from the disjuncts and some disjuncts complete.
Furthermore, the result of the por may be demanded by some other computation. Should
this demand be propagated to all disjuncts or just the most promising ones or propagated
according to some other policy? The answer is affected by the computational requirements
of the disjuncts, other computations in the system competing for the resources, and the

2.1. CONTROLLING COMPUTATION 41

urgency of the demand. This is the sort of scheduling problem that we must analyze to
ultimately deterwmne the control we want.

Issue 5: Other types of control

Priorities provide only one dimension of computation control. However there are three
primary degrees of freedom in computation control:

1. the amount of resources available to speculative activities

One problem with ordering of computation is that one activity with the same position
in the ordering (i.e. the same priority) as another can effectively starve the other
activity of resources. Normally, activities in the system operate at different relative
priorities and starvation of resources is exactly what we desire to ensure that the most
important activities can proceed. Sometimes, though, there are situations where we
would like two or more activities to share the available system resources. For example,
we might want all the activities to run simultaneously, each with reduced resources if
necessary. This implies that each of these activities operates with the same priority.
The problem then is that there is no way to ensure that the resources are allocated
equally (or in whatever desired ratio) across the activities. The allocation will in
fact tend to be very unfair, favoring the activity with the greatest number of tasks
(assuming that all the activities' tasks operate at the same priority). Thus an activity
with a large number of tasks can effectively starve another of resources.

2. the rate at which an individual computation may progress

Sometimes we would like the ability to multiplex the set of tasks comprising some
activity, or at the very least, control the rate at which a task executes. In [Korn82],
Kornfeld described a problem which can be solved faster, on average, by multiplex-
ing the tasks on the available processors rather than by running some subset of the
tasks at maximum rate.2 Kornfeld has termed parallel algorithms possessing this
property combinatorially implosive. Such algorithms have the property that interme-
diate results generated by one approach (say top-down) can prune nodes in another
approach (say bottom-up) and vice versa (intermediate results from bottom-up can
prune top-down nodes). (See [Korn82] for a good example.) When such approaches
run concurrently, the resultant synergy in generation and exchange of intermediate
results causes a collapse in the total processing required.

3. the duration for which an individual computation may proceed

Occasionally we would like to be able to control the duration for which a speculative
activity executes. Such control is important for potentially infinite computations. A
good example is speculative streams: we would like to control the horizon for which
we precompute stream elements as discussed in Section 1.2.5.

2Kornfeld actually described this phenomenon in the context of a single processor, but it obviously
pertains to multiprocessors as well (if for no reason other than only one processor may be available).

42 CIIAPTER 2. MAIN PROBLEMS

Independent control of the amount and rate of resource use allows various tradeoffs,
both in the number of tasks pursued in a speculative activity and in the rate at which they
are pursued (like multiplexing tasks). A single dimension of control, such as that given by
priorities, cannot provide such tradeoffs. For example, with priorities only, we can get the
starvation problem described under point (1) above. In addition, with priorities we cannot
express the duration control that is essential for potentially infinite computations, such as
speculative streams.

2.2 Reclaiming Computation

To use machine resources efficiently we must reclaim the resources devoted to irrelevant
computation The essential issue is the reclamation of computatin resources so they may
be recycled for other computations. We assume that:

1. processors are expensive and few in number, and

2. memory is cheap and plentiful.

(These assumptions correspond to the basic state of the art for multiprocessor implementa-
tions) Thus by computation resources we really mean processor resources. Reclamation of
computation state, i.e. the storage used by a computation, is an independent issue. Such
reclamation is conventionally performed by a memory garbage collector.

The two important issues for computation reclamation are:

1. Reclamation speed

If there are no excess resources, irrelevant computation must be reclaimed as quickly
as possible. If there are excess resources, the speed of reclamation is not as important.
Still, it is desirable to reclaim irrelevant computation under such conditions because
such computation requires management overhead and affect. Vhe performance of other
computation through memory traffic and interconnect contention.

2. Run-away task phenomenon

This phenomenon occurs when an irrelevant computation spawns descendants faster
than they can be reclaimed. Obviously, this phenomenon must be avoided. There
must be a guarantee that all irrelevant computation will eventually be reclaimed.

We categorize the various methods for reclaiming computation according to the fol-
lowing criterion. Since a task is the entity that is assigned processor resources (by the
scheduler) in Multilisp, we use tasks as the granularity of computation. Thus an irrelevant
task in the sequel means a task whose computation is irrelevant. The following discussion
remains applicable to other parallel processing paradigms by suitably interpreting "task"
with respect to the given paradigm.

2.2. RECLAIMING COMPUTATION 43

1. How does the method determine if a task is irreleva, 7?

There are two ways to determine if a task is irrelevant: implicit and explicit detection.
In implicit detection, the system deduces that a task is irrelevant. In explicit detection,
the user declares a task to be irrelevant.

2. How does the method reclaim a task's computation?3

There are three ways to reclaim computation, i.e. cause a task to release its processor
resources:

(a) kill the task: cause the task to permanently quit executing
This is, of course, irreversible.

(b) "short-circuit" the task: cause the task to abandon the remainder of the compu-
tation and immediately return a nonsense or "no-value" result
Again, this is irreversible.

(c) suspend the task
This is potentially reversible.

2.2.1 Computation reclamation methods

To illustrate the spectrum of reclamation methods and to advance our discussion by exam-
ple, we describe four representative methods of reclaiming computation.

Garbage collecting tasks

There is no operational test that a system can perform to determine if a task is irrelevant
(short of actually performing its computation or maybe some other computation). There
are two ways to get around thts problem and perform implicit relevancy detection. The first
way is to approximate the relevance of a task 4,, its accessibility. which can be determined
operationally. Thus a task (or more properly, the computation state of a task) is considered
relevant if and only if it is acce:sible from the root pointer set, so its result can be accessed.
This amounts to the garbage collection of tasks, an idea first suggested by [Baker78b].

Garbage-collecting tasks really amounts to extending normal garbage collection to tasks.
To determine the accessible tasks we must determine the set of all accessible objects (since
objects can have pointers to tasks).

There are two problems with garbage-collecting tasks, both following from the assump-
tion that a task is relevant if and only if it is accessible:

1. A task may be irrelevant but still accessible.

3 To reiterate, by computation reclamation we mean reclaiming the computation's processor resources.
This may or may not be connected with reclaiming the computation's state, i.e. memory resources.

44 CHAPTER 2. MAIN PROBLEMS

2. Inaccessibility implies irrelevance only if all the computation is functional. In the pres.
ence of side-eflects, as in Multilisp, an inaccessible task can still be relevant through
the side-effcets it may perform.

On the positive side, garbage-collecting tasks prevents run-away tasks: all running tasks
are stopped during a garbage collection and not restarted until proven accessible. We discuss
this in more detail in Section 4.2.

Context-driven reclamation

The other way to perform implicit relevancy detection is by context. In many cases, we
can deduce that a task is irrelevant from the context in which it appears. Consider the
following example with parallel if (which we call pi:).

(pif pred conseq alter)

Assume that pif creates tasks to evaluate pred, conseq, and alter respectively. If pred
evaluates to true (false) we know that conseq (alter) is relevant and that alter (conseq) is
irrelevant. Similarly, with por (or pand) all remaining disjuncts (conjuncts) are irrelevant
once one disjunct (conjunct) returns a true (false) value. In both these examples, we can
deduce the relevancy of tasks from the context. Then any of the three methods mentioned
earlier can be used to actually reclaim the task's computation.

There are three problems with context-driven reclamation:

1. It can only correctly deduce irrelevancy in the absence of side-effects. Even though a
task's result may no longer be required, the task can still be relevant through the side-
effects it may perform. Note that context-driven reclamation approximates relevancy
by accessibility, so it is really a special form of garbage collecting tasks.

2. It is not general-purpose. It can only deduce the relevancy of tasks in certain well-
defined contexts.

3. It cannot deduce the relevancy of descendant tasks (unless a lot is known about the
structure of the application) since there need not be any connection between the
relevancy of a task and its children. Hence this method by itself is inadequate and
cannot prevent the run-away task phenomenon.

Explicit Termination (Explicit Checking)

In this form of reclamation, reclamation is "wired" into the application. The programmer
arranges for each computation he/she may ever want aborted to periodically check some
termination condition and simply terminate, returning a value if this condition is true. This
value is either a special terminal value (perhaps a "no-value" like in [Soley] - see Section

2.2. RECLAIMING COMPUTATION 45

3.7) or a nonsense value. In any event, computation is essentially short-circuited by a true
termination condition. Note that the programmer performs both the relevancy detection
and actual reclamation explicitly.

There are three problems with explicit checking:

1. inserting all the termination checking

Every descendant computation and (potentially) every function must have termination
checks. With system help this may be manageable, but it certainly cn be difficult
and awkward manually. Furthermore, some functions might be outside the scope of
an application, having been compiled in different modules or previously defined in the
environment. How do we perform termination checking in these uunknown" functions
which may spawn descendant computations?

2. nested termination

If several pors are nested, do we have to have an independent termination check for
each por?

3. sharing of computation

All parties which might ever share the result of a computation must understand if
that computation could ever terminate and what to do if that com.putation does
terminate. For example, a disjunct E in a por may spawn a descendant computation
whose result is shared with some function F external to the por. What happens if
some other disjunct returns a true value first and disjunct E is terminated? What
value is returned to function F? Unfortunately, in the presence of side-effects it is all
too easy for this type of sharing to occur.

Since each task checks for termination, there cannot be any run-away task phenomenon
with explicit checking, at least amongst the tasks with checking. If the checking is not
thorough, and misses descendant tasks spawned by calls to unknown functions, irrelevant
tasks may proliferate.

User-directed reclamation

In this form of reclamation, the programmer declares a task to be irrelevant - through
some sort of construct, like "kill-task" - and the system kills the task. Another variation
is for the system to merely suspend such tasks.

Since the user manages the irrelevance declaration, the run-away task phenomenon may
occur in identifying and dealing with descendant tasks (depending on the implementation
details).

The main problem with user-directed reclamation is managing all potentially irrelevant
tasks. We discuss this problem in Section 2.2.2.

46 CITAPTER 2. MAIN PROBLEMS

Method Irrelevancy detection Actual reclamation method
Garbage collection implicit, by accessibility kill tasks
Context-driven implicit, by context kill, short-circuit, or suspend tasks
Explicit checking explicit, by terminate flag short-circuiting tasks
User-driven explicit, by annotation kill, short-circuit, or suspend tasks

Table 2.1: Characteristics of reclamation methods

Context-directed and user-directed reclamation are actually closely related. Context-
directed reclamation relies on implicit relevancy detection whereas user-directed reclamation
relies on explicit relevancy declaration. Both may use the same back-end methods to actu-
ally rcclaim task computation. The distinction between context-directed and user-directed
reclamation is fuzzy and depends strongly on the user's perspective. To the end-user, a
construct like pif or por may appear to employ purely implicit reclamation: the user needs
to declare nothing. To the systems programmer writing library routines or macros to imple-
ment pif and por, these constructs may be implemented using purely explicit reclamation.

Summary

Table 2.1 summarizes the characteristics of each of these methods.

2.2.2 Problems with computation reclamation

Problems with relevancy detection

There are problems with both the implicit and explicit methods of relevancy detection.
With implicit relevancy detection, the problem is side-effects. As we mentioned earlier, the
presence of side-effects means that an inaccessible task can still be relevant.

There are two problems with explicit relevancy detection. The first problem is that a
programmer may declare a relevant task irrelevant. Although a programmer (or program-
ming system) can potentially understand an entire program, the programmer may choose
not to, may not be able to, or may simply make an error. Thus a relevant task may de-
mand the result/effects of a task declared irrelevant, by touching the task or by requiring
the side-effect(s) the task will perform (e.g. release a lock or semaphore).

If a task is killed when it is declared irrelevant, then lockout deadlock will result if some
other task should later touch it (since the placeholder of the irrelevant task will never be
determined). One solution to this problem is to signal an error when a dead task is touched,
in effect declaring it an error to mistakenly declare a task irrelevant.

This solution has two problems. First, a dead task may be touched at a point in time

2.2. RECLAIMING COMPUTATION 47

and space far from the point at which it was mistakenly declared irrelevant. Thus the
error signalled may be far removed from the actual error, making it difficult to understand
and repair. A single mistake could result in multiple errors, s different tasks touch the
same dead task. Second, the relevance of a task may change with time. Initially, the best
information available may suggest that a task is irrelevant. However, information may later
be produced (e.g. from new input data) that suggests that the task is in fact relevant.
Th.mo is no way within this first solution to express this "imperfect" relevance knowledge.

The second problem with explicit irrelevancy detection is managing the irrelevant tasks.
It is very awkward to manage the names of all the irrelevant tasks at the user level. For
example, with explicit checking the user must manage all potentially irrelevant tasks by
inserting tetmination checks and with usnr~directed reclamation the user must maintain
lists of all potentially irrelevant tasks. A more fundamental problem is getting the names
of irrelevant tasks in the first place. This problem arises with unknown function calls. The
user has no way of tracking the descendants that such calls may create.

Problems with actual reclamation methods

All three methods for actually reclaiming computation - killing, short-circuiting, and sus-
pending - have problems. The most serious problem with killing is that it is irreversible.
This means that lockout deadlock is always a possibility in the presence of side-effects. As
we argued in the previous section, declaring it an error to demand the result (value or effect)
of a killed task is inadequate.

Short-circuiting is a particular form of killing (the short-circuited computation is never
completed) and even without side-effects has problems with unknown function calls, nesting
of computation, and sharing of computation.

Suspending is attractive because it is potentially reversible and thus can circumvent
lockout deadlock. Side-effects still pose difficulties for the usafety net" of suspending, be-
cause we have to be able to propagate the demand for a side-effect to the task(s) responsible
for performing it. (Or, prevent such task(s) from being suspended in the first place).

2.2.3 Summary

Table 2.2 summarizes the potential problems of each method of irrelevancy detection and
actual computation reclamation.

In addition to the speed of reclamation and possible run-away task phenomena, the
essential issues are:

1. How much of the reclamation must the user manage?

Does the user or the system manage:

(a) irrelevancy detection

48 CHAPTER 2. MAIN PROBLEMS

[Irrelevancy detection method Potenti' problems
Implicit Side-effects
Explicit Mistakes duo to user or side-effects

Managing tasks
Unknown function calls

[ctul reclamation method Potential problems
Killing Demanding killed tasks, for result (by touching),

or for side-effect
Short-circuiting Awkward to insert checks

Unknown function calls
Nested computation

Suspending _ Shared computation, i.e. demmding killed tasks
Suspending " Side-effects

Table 2.2: Problems with reclamation methods

(b) listing all irrelevant tasks and descendants

(c) the actual reclamation - checking or interrupting named tasks

2. Is the reclamation reversible?

The essential support required for computation reclamation is:

1. some way to recover from incorrect irrelevancy detection

The sources pf incorrect irrevelancy detection are too numerous and perverse - side-
effects, sharing of computation, and user mistakes - to realistically prevent incorrect
decisions.

2. some way to record the name of descendants

This addresses the problem of naming the descendan' "asks of unknown function calls.

2.3 Side-effects

With speculative computation, as with conventional parallel computation, the main issue
with side-effects is proper synchronization. The emphasis on relaxing synchronization con-
straints and the ability to abort computation give rise to three additional issues.

1. Persistence

2.3. SIDE-EFFECTS 49

When a task is aborted what happens to the effects it has performed? If such effects
persist after the task is aborted the semantics of the application may be violated. For
example the task may still hold some lock or semaphore, possibly leading to deadlock.
Or more generally, it may be possible to deduce that a task executed (and even for
how long) by examining its effects, when in fact none of the task was to be visible once
aborted. Other times, persistence of effects may be desirable: we may be depending
on persistenco or the effects may benign, such as if nobody observes them.

One possibility is to completely undo all side-effects performed by an aborted compu-
tation, yielding 'all-or-nothing" semantics for side-effects, as in atomic transactions.

2. Interference

With speculative styles of computation we might temporarily violate precedence con-
straints - to speed execution - and repair the execution order later. This could lead
to interference, i.e. name conflicts, that would otherwise not occur. For example, in
branch prediction both branches could side-effect the variable x. Ve must ensure that
x has the proper value afterwards. This entails both a synchronization issue (ensuring
the proper final value for x) and a persistence issue (what if one branch side-effected
y and the other branch did not - which effect persists?). Both of these problems can
be addressed (at considerable potential expense) by encapsulation methods in which
each speculative thread has a copy of the store and the copies are merged afterwards.

3. Relevance

Certain side-effects that would be performed by an aborted task may be relevant.
This is the case with the lock/semaphore example given previously. There can also be
more subtle interactions: a task may later write a shared object for which other tasks
are waiting. This implicit communication introduces two types of problems. First, it
is not possible, in general, to determine which tasks "view" the side-effects a task may
perform. 'his makes implicit identification of irrelevant tasks impossible. Second, it
is not possible, in general, to determine which tasks generate the side-effects a task
may require.4

In many instances the only reason that the relevance issue surfaces in the lock or
semaphore example is because of the persistence in the first place of the side-effect
to acquire the lock or semaphore. This decn'nstrates the close coupling between
relevance and persistence. In other instances, relevance is an issue even without
persistence. In the lock/semaphore example some other task T2 could have acquired
the lock/semaphore on behalf of task T1 with T, still responsible for its release. Thus
the persistence of task T1's side-effects has nothing to do with the deadlock and T1 's
relevance.

4Complicating these two problems is the fact that it is not even possible, in general, to determine a priori
if a task will perform a side-effect.

so CHAPTER 2. MAIN PROBLEMS

2.4 Errors and Exception Handling

Speculative computation raises the following two new issues in error and exception handling:

1. Control-related errors

A task controlling the resource use of others may encounter an error or exception
condition. How does this affect the controllee(s)?

2. Irrelevant errors

Errors may be or become irrelevant by virtue of occurring in an irrelevant task or in
a task which later becomes irrelevant. Recognizing this, how are errors and exception
conditions treated?

These issues and the whole problem of errors and exception handling in a parallel com-
puting environment need to be investigated further.

2.5 Summary

The four main problems with supporting speculative compuleMion in Multilisp are control-
ling computation, reclaiming computation, side-effects, and errors and exception handling.
The key issues in controlling computation are the interaction of computation, the modularity
of computation control, and the desired control policy. The important issues in reclaiming
computation are the speed of reclhmation and the degree of management required by the
user. Reclamation should be reversible and there should be support for naming descendant
tasks. Carefully distinguishing between the reclamation of computatio-I resources (what
we mean by computation reclamation) and computation state makes reversible reclamation
possible.

Chapter 3

Related Work

Many researchers have noted the potential of speculative computation and proposed var-
ious constructs for introducing speculative computation (although few seem to have been
concerned about controlling it). In this chapter we survey the moat substantial efforts to
date (that we know of) concerning speculative computation, giving extensive coverage of
other Lisp-based approaches. We criticize these other efforts with respect to the problems
discussed in Chapter 2.

3.1 Sponsors

Kornfeld and Hewitt defined a sponsor as 'an agent that provides computational effort"
(Korn8lb]. A succession of Actor-based [Agha] languages, starting with Ether [Korn79],
and continuing with Act2 [Theriaultj and Acore [Manning], have incorporated sponsors. In
Ether, for example, each activity has a sponsor which controls the amount of processing
power that the activity receives. A sponsor is created with an initial amount of processing
power which may be distributed as the sponsor directs, such as to any sponsors it may
create. A sponsor may redistribute any processing power that it in turn may receive. A
computation may be aborted by sending a "stifle" message to its sponsor.

Sponsors provide a framework to control computation resources. Certainly, various
forms of speculative computation can bj expressed within this framework, but this potential
of sponsors has not been developed very much. Kornfeld investigated some ideas in this
direction, notably his discovery of combinatorial implostion [Korn82) and some work with
cryptarithmetic puzzles [Korn8la.

3.2 Burton's Work

In [Burt85dJ and [Burt85b] Burton considered support for speculativc computation in a
simple functional programming language. To control computation, he proposed a single

51

52 CHAPTER 3. RELATED WORK

primitive function, which he termed priority. This function takes two arguments: an
expression E to evaluate and a real-valued priority r. It operates essentially as future
in Multilisp with the addition of a priority: priority(Er) creates a speculative taskl to
evaluate expression E at priority r and immediately returns an empty placeholder object
which the task later fills with the result. A task accessing an empty placeholder is blocked
until it is filled. Computation resources are allocated to favor high-priority tasks over lower
ones Only the ordering implied by the relative values of the priorities is important in this
determination. Mandatory tasks (those not created with priority) are always favored over
speculative tasks. Although not mentioned by Burton, it is apparent that any child task of
a speculative task (whether or not the child is created with priority) is also speculative.

If a mandatory task demands the result of a speculative task, the speculative task is
upgraded to mandatory. Nothing analogous occurs if one speculative task demands the
result of another, i.e. priorities do not obey transitivity [Burt89]. Thus Burton's work
suffers from the priority subversion described in Section 2.1.

Because Burton considers only a functional language, a speculative task is irrelevant
when its placeholder is inaccessible. Thus one could use implicit reclamation - garbage
collecting tasks - for reclaiming irrelevant computation. Burton suggests the explicit
reclamation approach of Grit and Page [Grit). This approach consists of spawning "killer"
processes to traverse the descendant tree. Burton also suggests using this same approach,
with "promoter" processes replacing "killer" processes, to upgrade speculative computation
to mandatory.

Problems

The major weakness with Burton's approach centers on his system of priorities which suffers
from the following three problems:

1. Lack of expressiveness

As discussed in Section 2.1, priorities provide only one dimension of computation
control.

2. Lack of modularity

The priorities in Burton's work occupy a global space: there is no hierarchical struc-
ture. Thus a programmer must manage a global space of priorities, making it difficult
to develop and understand pieces of a program independent of the whole.

3. Lack of flexibility

The priorities iln Burton's work are fixed. Thus the computation resources allocated
to speculative activities cannot be reassigned in the event that better information

'Burton used the term computation instead of task. We use task in this description to avoid confusion
with the types of computation defined in Section 1.1.1.

3.3. DAPS 53

becomes available. Furthermore, the priorities lack transitivity, leading to priority
subversion.

3.3 DAPS

Another functional language effort which addresses speculative computation is Hudak's
work on Distributed Applicative Processing Systems (DAPS) tHud84]. Hudak presents
a model for distributed graph reduction which incorporates vital (i.e. mandatory) tasks,
eager (i.e. speculative) tasks, and reserve tasks tHud83I. In our terminology his reserve
task is a speculative task that is no longer required by the activity which created it but still
is (or may be) required by some other activity. Hudak describes an implicit reclamation
scheme to collect garbage graph nodes, delete irrelevant tasks, and detect dormant (i.e.
deadlocked) graph nodes in this model (1ud82]. This scheme uses a distributed mark-
sweep algorithm which runs concurrently with the graph reduction process. The mark
phase consists of two processes. The first marking process traces from the task roots on
each processing element to find all deadlocked nodes. After this process completes, a second
marking process traces from the graph root to find all vital, eager, and reserve tasks. After
the mark phase completes, the sweep phase deletes all irrelevant tasks in the system task
queues and pi.rforms a conventional memory sweep.

Problems

1. There is no mechanism in Hudak's model to control resources allocated to speculative
computation.

2. The garbage collection scheme has problems, as discussed in Chapter 2, when extended
to a computation model su'ch as Multilisp's which includes side-effects.

3. The garbage collection scheme may be too slow to discover that a task is irrelevant.
Irrelevant tasks can run until the next sweep phase completes, which may be a long
time (see discussion in Section 4.2.1).

3.4 MultiScheme

MultiScheme [Miller] is a -ersion of Scheme [Abelson,Rees] extended with parallel con-
structs. The chief such construct is future, which MultiScheme inherited from Multilisp.
MultiScheme is very similar to Multiiisp although their implementations differ greatly. Mul.
tiScheme is based on M.I.T. Scheme (an extension of Revised 3 Scheme [Rees]) and includes
special hooks into the implementation for experimenting with different scheduling strategies.
Multilisp, in contrast, takes a closed view of the implementation.

MultiScheme provides two forms of support for speculative computation. The first
is the procedure disjoin. This procedure takes an arbitrary number of undetermined

54 CIIAPTER 3. RELATED WORK

placeholders as arguments and returns a placeholder for the first argument to be determined.
Thus disjoin can be used to introduce "first-of" styles of speculative computation where
the first alternative to return success renders all other alternatives irrelevant. The second
form of support provided by MultiScheme is a stop-and-copy version of the Baker and
Ilewitt algorithm [Baker78b] to garbage collect irrelevant tasks. MultiScheme provides for
the "finalization" of objects. One garbage collection cycle before an object disappears from
the system (as a result of being inaccessible from the main root), user supplied code can be
invoked to "finalize" the object, releasing locks and cleaning up. See [Miller) for the details
of this mechanism.

More recently, Epstein [Epstein) has added priority-based scheduling to MultiScheme
using the scheduling hooks mentioned above. Each task has a priority and the scheduler
endeavors to run only the highest-priority tasks during each time slice. The priority of
a task is at least as great as that of any tasks waiting for its value: when a task touches
another task, the touchee's priority is promoted to the toucher's priority. Any change in the
touchee's priority is propagated in the same way to the task it may be touching, and so on,
down the touch chain. This priority system is also used in reverse to reclaim computation:
when a task is no longer required (e.g. if it is a remaining alternative after a disjoin
returns) the task priority is downgraded to a very small value. If this task is touching
another, the touchee task is also downgraded (provided the touchee has no higher-priority
toucher), and so on down the touch chain. Epstein's work is based on ideas outlined in our
proposal [Osborne].

At this time, no one, including Epstein, has run any applications with Epstein's ad-
ditions for speculative computation. Thus we cannot compare MultiScheme's support for
speculative computation with ours on the basis of performance.

Problems

1. Although Epstein's work has provided MultiScheme with an ability to control com-
putation resources, the control lacks modularity.

2. There is a lack of expressiveness in the types of speculative computation that may be
introduced. For instance, there is no way to express speculative streams.

3. Downgrading task priorities lacks expressiveness for reclaiming computation since
untouched descendant tasks are not downgraded. There is no mechanism to auto-
matically downgrade all the children of a downgraded task and no mechanism to
automatically downgrade a collection of tasks. Thus the user must explicitly track all
tasks and their decendants that he or she might want to reclaim.

The burden of explicitly tracking all tasks is so onerous in MultiScheme (consider, for
example, descendant tasks generated by "unknown" function calls) that, in fact, only
the top level tasks in a disj oin or pii are reclaimed by downgrading. All descendants
are reclaimed implicitly via garbage collection. (This means that there is no run-away
task problem). This leads, though, to the next problem.

3.5. QLISP 55

4. Garbage-collecting tasks suffers from two problen=. First, it can be slow to discover
that a task is irrelevant. Thus it detracts from the efficiency with which the resources
may be used. Second, it reclaims all inaccessible tasks, even those that are mandatory
by virtue of the side effects they are performing.

On the positive side, the Baker and Hewitt garbage collection algorithm used in
MultiScheme is guaranteed to collect all run-away tasks.

5. Finalization, which is intended to deal with the problem of exclusive resources (e.g.
locks and semaphores) held by aborted tasks, is slow to occur. Not only must one
wait until a garbage collection flip occurs, but one must also wait until the object
becomes inaccessible before it can be finalized.

3.5 Q1isp

Qlisp [Gabr84,Gabr88,Gold88,Gold89] is a version of Common Lisp (Steelel extended with
explicit parallelism constructs. Qlis. and Multilisp are quite similar in their approach to
exploiting parallelism. Qlisp even has a construct similar to future. In fact, the main
'qe constructs in Qlisp - the parallel constructs - have been implemented as macros in
MultiScheme.

Qlisp has two forms of support for speculative computation: heavyweight futures (to be
implemented soon) and four ways to reclaim computation.

Heavyweight futures are designed for Or-style parallelism (where only some subset of a
set of tasks may be required). A heavyweight future is a single future object and a set of
tasks.2 A combining algorithm accumulates the task resdlts to generate the future value.
The spawn construct which creates a heavyweight future takes a set of keyword parameters
for this combining algorithm. These parameters specify:

1. an initial value, init, for the accumulator,

2. a filter function, Filter, which determines if a task result should contribute to the
future value,

3. a combining function, Combine, for updating the accumulator with a task result,

4. a terminate function, Terminate, for determining when to return the accumulator
value, and

5. a count, count, which specifies the number of times the terminate function must be
satisfied.

The combining algorithm is as follows. result denotes the accumulator value.

21I; all the tasks need be known a priori; they can also be contributed dynamically.

56 CHAPTER 3. RELATED WORK

1. result 4- init

2. when task i teturns vali:

if count > 0
if Filter(val) {

result 4-- Comb'ne(vali, result)
if Terminate(result) (

count 4- count - 1
if count = 0

determine future to result and kill all remaining tasks}

The killing of tasks with heavyweight futures is an example of the context-driven recls,
mation discussed in Section 2.2.1. This is the first way to implicitly kill tasks in Qlisp. In
this case, only the tasks associated with the heavyweight future are killed; any descendants
of these tasks are not killed.

Constructs such as qor and qand (Qlisp's per and pand) can be built on top of heavy-
weight futures.

The second way to implicitly kill tasks in Qlisp is with garbage collection. Unlike
in MultiScheme, garbage collection in Qlisp is not the primary mechanism for reclaiming
computation; it is intended as a backup instead. Thus the speed of garbage-collecting tasks
is not a critical issue in Qlisp. The second problem we noted earlier with garbage-collecting
tasks is that inaccessible, but still mandatory (via side-effect) tasks may be incorrectly
killed. Qlisp allows tasks to be declared "for efrect" when created. Such tasks are never
killed by the garbage collector.

Qlisp also includes two ways to r*xplicitly kill tasks. The primitive kill-proceasa s kills
the tasks(s) associated with a given future. It is an error to touch a future whose task(s)
have been killed.

The other way to explicitly kill tasks is with the catch and throw constructs.

(catch tag form) evaluates form. If this evaluation produces a value, the value is re-
turned as the value of the catch expression.

(throw tag value) causes value to be "thrown" to the nearest catch in the dynamic
task creation chain which matches tag. Upon receiving a thrown value, catch immediately
returns that value and kills all tasks spawned while evaluating its form. (Qlisp also has
a return-from construct which is equivalent to throw except the tag is lexically scoped.)
Thus catch and throw can be used for "one of" styles of speculative computation (e.g. OR
parallelism) where one alternative is selected from several explored concurrently.

3Tasks ae called processes In Qlisp.

3.5. QLISP 57

Qlisp provides a solution to the problem of killing tasks possessing an exclusive resource.

(unwind-protect form cleanup) evaluates form and always evaluates cleanup before

1. the unwind-protect returns, even if form causes a throw to be evaluated, or

2. the task evaluating unwind-protect is actually killed.

Problems

The major problem with exploiting speculative computation in Qlisp is the lack of any way
to control computation resources. We list four other problems below.

1. Lack of expressiveness

As with MultiScheme, there is no way to express certain types of speculative compu-
tation. F:r instance, there is no way to express speculative streams.

2. Task touching

With explicit task killing, a task can touch a killed task. In the case of catch/throw
this can happen even without side-effects - the value returned by a throw could be
a pointer to a task spawned within its matching catch. Touching a killed task is
handled by signalling an error. As discussed in Section 2.2.2, this can lead to bizarre
and undesirable error behavior.

3. Task killing lacks sufficient power

Except for garbage collection, which intended as a backup, each way of killing tasks
in Qlisp lacks sufficient power. The simplest way to kill tasks is with kill-process.
However, kill-process does not kill child tasks and thus the user must explicitly
track all tasks and their descendants that he or she might want to kill. This need to
explicitly track all tasks makes it especially difficult to deal with "unknown" function
calls which may create child tasks.

The next way of killing tasks is implicitly in conjunction with heavyweight futures.
The supposed advantage of heavyweight futures over more primitive implementations
using the catch and throw mechanism (besides ease of expression) is that a heavy-
weight future clearly defines the lifetime of the future's associated tasks and thus these
tasks can be killed implicitly. However, the children of these tasks may have a lifetime
exceeding that of the heavyweight future. (The future object of a child task could
Uescape" the heavyweight future by side-effect or by the return value.) Thus only the
tasks immediately associated with a heavyweight future (and not their descendants)
may be killed implicitly.4 This leaves the user responsible for explicitly killing all the

4Even implicitly killing these immediate tasks is problematic: some of them could be required for their
side-effects, such as releasing a lock or semaphore. The unwind-protect construct provides protection
against this problem.

58 CHAPTER 3. RELATED WORK

descendant tasks. We have already mentioned the problems of explicitly killing with
kill-process.

The alternative, and last way to kill tasks, is to use catch and throw. This method
kills all descendant tasks, unlike the previous two methods, but now runs into problems
with side-effects. Because computation is killed when it is thought to be irrelevant,
there is no way to restarL it if proves to be necessary. Side-effects can make it very
difficult to determine when a ta,-'! i2 irrelevant, especially in large systems.

4. Run-away tasks

Descendants of a catch may be spawned faster than they can be killed. One expensive
way to prevent this is for a task to check up its chain of catches before spawning.

3.6 PaiLisp

PaiLisp [ito] is another parallel Lisp based on Scheme. PaiLisp is built on top c PaiLisp-
Kernel, which is Scheme plus four parallel support constructs. Only two of these coustructs
are relevant here: spawn and call/cc. The familiar fiuture and delay constructs are built
on top of PaiLisp-Kernel. PaiLisp also contains a number of constructs utilizing speculative
computation: pcond, which is a speculative version of cond, and par-and, and par-or
which are speculative versions of and and or respectively (like our pand and por). These
speculative constructs are also built on top of PaiLisp-Kernel.

The key to speculative computation in PaiLisp is call/cc. PaiLisp-Kernel extends the
semantics of Scheme's call/cc (see [Rees]). As in Scheme, call/cc creates a continuation
and applies the argument of call/cc, which must be a procedure of one argument, to this
continuation. 1lowever, each such continuation retains the name of the task that created
it. When a continuation is invoked (with some argument arg), the caller's task is compared
with the continuation's creator task. There are two cases.

1. If the caller's task is the same as the creator's task, then the call causes a "goto"
within that task, just like in Scheme. The call/cc which created the continuation
returns with arg.

2. If the caller's task differs from the creator's task, then the call causes a "goto" within
the creator task just as if the continuation were invoked by the creator task. Thus
the call/cc in the creator task which created the continuation returns with arg.
The caller task proceeds concurrently with the goto in the creator task and receives
undefined as the return value of the call.

Thus a continuation is a goto strictly within its task of creation. A continuation invoked by
a task other than its creator amounts to remotely forcing a goto in the creator task. This
provides a means for one task to terminate another (as well as other inter-task control). To
illustrate this we describe the spawn construct.

3.6. PAILISP 59

(spawn c) creates a task to evaluate c and returns undefined. A task in PaiLisp-Kernel
is considered to have a definite start and end. Thus to terminate a task we can just force
it to goto the end of the task. The following code captures the "ending" continuation and
saves it in the variable p.

(spawn (call/cc (lambda (cont) (setl p cant) c)))

To terminate c anytime during its execution we merely have to invoke the ending continu-
ation saved in p, as in

(p 'dummy)

This causes the task evaluating c to jump to the end and terminate. Thus PaiLisp's ex-
tension to call/cc allows the ability to kill tasks.5 [Ito) describes how to use this ability
to construct pcond, par-and, and par-or and, of course, this ability could also be used in
other applications of speculative computation.

Problems

1. There is no way to control computation resources.

2. Task killing via task ending continuations is inadequate.
"Killed" tasks cannot be restarted. Thus this form of computation reclamation suffers

from the problems with sharing and nesting of computation described in Section 4.2.
Also, in Pailisp-Kernel we have to explicitly manage each task that we might ever
want to kill. For instance, we have to explicitly retain the task ending continuation
of each such task. However, we can avoid the manual killing of descendant tasks that
this implies by an appropriate macro interface which saves the ending continuation
of a task's children in some place that the task's ending continuation can find and
invoke them. This trick would give automatic naming of descendants and thus avoid
the awkwardness and the difficulties with unknown function calls described in Section
4.2.

3. Task touching

As in Qlisp, a task can touch a killed task.

4. Side-effects

There is no provision for dealing with tasks that may possess exclusive resources (e.g.
locks and semaphores) when killed.

5. The continuation-based termination mechanism seems very expensive.

6There seems to be at least one major problem with this extension, however: what happens if a continu-
ation is invoked after its creator task has returned a result and terminated?

60 CHAPTER 3. RELATED WORK

3.7 Speculative Computation in Dataflow

Soley [Soley] investigated speculative computation in the dataflow language Id [Nikhil].
His interest was primarily in supporting the multiple-approach speculative computation
prevalent in A.I.

In the first part of his thesis, Soley introduces nondeterminism into the determinate
language Id to give the ability to control speculation. He suggests extending Id with a
single nondeterministic primitive: a multiple assignment cell (in contrast to the write-once
cells (I-structures) already in Id). As Solcy demonstrates, this addition is sufficient to allow
computation reclamation by explicit checking. Thus his multiple assignment cell brings Id
up to the latent ability of imperative languages with respect to speculation control. Soldy
points out that this explicit checking approach is awkward and cannot deal with unknown
function calls (as we argued in Section 2.2.1).

Soley addresses these problems in the second part of his thesis where he describes lan-
guage and system support for speculation. In the Id system, requests to the system for
memory allocation and code block execution (i.e. function calling) are managed by nonde-
terministic entities called managers. Soley's idea for controlling computation is to place an
agent between the application' code and the system manager(s) to "filter" these manager
requests. Since managers are part of the Id language, Soley describes this agent itself as a
manager. This elegant idea allows Soley to express the desired computation control com-
pletely within the Id language (i.e. by writing appropriate Id code for the agent-managers). 6

For example, an agent-manager could allow computation to proceed based on some priority
of the requests.

Soley performs computation reclamation in the same manner: he filters requests through
agent-managers that check some flag for reclamation. There are two strategies when the
flag indicates reclamation. The agent-manager can either suspend computation by failing
to pass requests on to the system manager, or terminate computation by returning a special
"service denied; please terminate' result to requests. Soley chose the latter strategy so that
the underlying dataflow graphs would be self-cleaning. To indicate termination, an agent-
manager returns the special value "no-value". Soley modified all major language schemas,
such as function-calling, to take appropriate actions when an input is "no-value". (See the
Appendix of [Soley] for details.) In general, if any input to a dataflow operator is "no-
value", the result will be "no-value" as well. The predicate no-value? "captures" such
propagated "no-values".

This method of computation reclamation amounts to explicit checking at the granular-
ity of manager requests (i.e. allocation and function calls). Reclamation is achieved by
"short-circuiting" computation, forcing it to terminate prematurely by r.turning a special
nonsense result, as described in Section 2.2.1, rather than suspending computation. Un-
known function calls pose no problems with this computation reclamation since managers
are inherited dynamically by called code. Thus any called code, even if it is an "unknown"

6Though he had to extend the language and system architecture a bit.

3.7. SPECULATIVE COMPUTATION IN DATAFLOW 61

function, always has a well-known manager to perform termtination checks on allocation
and function calls.

Solhy abstracted and encapsulated his support for speculative :omputation in three
constructs: speculate, terminate, and priority.

speculate f Ist

calls f on each element of lat in parallel. Leto us call the application of f to an element of
Ist a branch. (Soley calls this a task, but we prefer branch to avoid confusion.) speculate
returns the result of any one branch (presumably the first branch to yield a result). In
this sense, speculate is like McCarthy's amb operator [McCarthy]. Unfinished branches
are terminated when speculate returns. Thus speculate is basically parallel or, i.e. par
(assuming that not all branches return nil).

terminate dummy

injects "no-value ' into the executing computation, causing that branch to be terminated.

priority priorityI

sets the priority of the executing branch to priority. Each branch can have a different
priority.

terminate and priority must be executed in the scope of a speculate.

speculate creates an agent-manager for each branch to control computation and uses
an array to communicate the relative success/failure of branches. It is certainly possible to
build other constructs for speculative computation using the same agent-manager approach.

Using a dataflow simulator, Soley investigated different approaches to solving the Eight
Puzzle (see Section 8.6 or [Nilsson]) using his support for speculative computation. His
results were mixed. While he found that speculation greatly reduced the critical path, this
only happened if the search depth was sufficiently large. In other words, he found the
cverhead for speculative computation to be rather large. This is not surprising given the
expense of managers and his rather coarse-grain checking. When he experimented with
priorities, he found that the overhead of priority management completely overwhelmed any
benefit.

Problems

1. Lack of expressiveness

As mentioned earlier, speculate is basically par and thus is only applicable to or-like
parallel search with a static number of branches. Not all speculative computation fits
this mold. Two non-conforming examples are or-like search with a dynamic number

62 CHAPTER 3. RELATED WORX

of branches and speculative if. These two examples, and many similar examples,
can be accommodated by implementing new constructs in terms of underlying agent-
managers.

Hlowever, a more fundamental problem with Soley's approaJi is his exclusive reliance
on the use of priorities for computation control. Thus his approach suffers the same
lack of expressiveness as described in Section 2.1. For example, Soley cannot express
speculative streams.

2. Priority subversion

Priorities are not transitive, leading to the effective subversion of priorities discussed
in Section 2.1 when one computation blocks on another computation of lower priority.
This is difficult problem to deal with because it touches on a fundamental problem
with controlling computation in dataflow. I

Each instruction in dataflow is an independently scheduled thread (i.e. task). This
ultra-fine-grained parallelism makes it too expensive to control computation at the
thread level (by attaching a priority with each instruction, for example). The alter-
native is to organize instructions into collections and attempt to control computation
by controlling the collection. This is the approach that Soley took: lie organized
computations into "branches" and assigned priorities to these branches. 7 This alter-
native implies a restriction in the granularity of control which forces a certain lack of
control: individual computations comprising a collection cannot be controlled. Thus
there are only two choices available when a computation in some collection A demands
the result of a computation in some collection B: either transfer A's priority to all
the members of B or do not transfer any priority. Both alternatives are inadequate
because the independent computations of B must be treated collectively.

3. Reclamation of shared computation

Soley's method of computation reclamation solves the nested computation and un-
known function call problems with explicit checking, but still suffers from the shared
computation'problem. This is only a latent problem because there is no way to express
shared computation in Id with Soley's extensions. Since Id evaluates all expressions
eagerly, there is no way for one expression to be evaluated simultaneously in the
scope of two non-nested speculates. (There is, of course, the possibility of branches
communicating via I-structures.)

This changes, however, with the addition of laziness to Id as proposed by [Heller]. A
lazy thunk could be simultaneously in the scope of two non-nested speculates and
thus represent shared computation if demanded by both speculates. What happens
if one speculate terminates its branch(es) which demanded the lazy thunk while the
other speculate still demands the thunk's value?

In Soley's scheme, each branch of a speculate is assigned an agent-manager which
all computations in that branch inherit via the dynamic scoping of managers. The

'The only such "branches' in Soley's work are the well-formed branches of his speculate construct and
he only assigned priorities to branches relative to other branches of the same speculate. We generalize both
these notions here.

3.8. PARALLEL LOGIC LANGUAGES 63

first branch to demand the lazy thunk will start the thunk in the branch's scope, and
thus the thunk computation will inherit that branch's agent-manager. Subsequent
demands for that thunk by other thunks will block awaiting the value (we are assuming
memoization of lazy thunks). If this first branch is now terminated, the thunk may
(depending on timing) evaluate to "no-value" instead of its "proper" result.

3.8 Parallel Logic Languages

Researchers in parallel logic languages have long recognized the potential of a form of
multiple-approach speculative computation which they call Or-parallelism. The idea of Or-
parallelism is to evaluate all the potentially unifiable clauses (i.e. "matching") clauses for
a given goal in parallel. (See (Shapi] for example.) There are two types of Or-parallelism:
one-solution Or-parallelism and all-solution Or-parallelism. One-solution Or-parallelism
is essentially like por: when one evaluation succeeds the remaining evaluations may be
aborted. Al-solution Or-parallelism involves no speculation per se since all evaluations rsre

required. However, in those parallel logic languages retaining the cut operator (from se-
quential Prolog), there can still be speculative computation in connection with cuts. See
[Hausman] for example. Or-parallelism is a simple idea, but its exploitation is difficult,
in general, due to the interference problem described in Section 2.3: the variable bindings
for the parallel clauses may clash. The general solution to this problem requires multiple
environments, with one environment per clause. Much of the work to date in Or-parallelism
has been concerned with reducing *the copying overhead involved with such multiple envi-
ronments. (See, for instance, the introduction of [Warren].)

With respect to Or-parallelism, work on parallel languages has split into two camps:
those committed to Or-parallelism as their primary means of concurrency and those com-
mitted to And-parallelism (a type of mandatory parallelism in logic languages), with lim-
ited Or-parallelism. To distinguish these approaches, we call the former "primary" Or-
parallelism and.the latter "secondary" Or-parallelism.

The most well-developed work in primary Or-parallelism seems to be that of the Aurora
System [Lusk], resulting from the collaboration of researchers from the Argonne National
Laboratory, the University of Manchester, and the Swedish Institute of Computer Science.
The Aurora System is an all-solution, Or-parallelism extension of Prolog with cut (so there is
still speculative computation). Although these researchers have recognized the potential of
speculative computation, they are still at an early stage. They have no means for controlling
Or-parallelism and their scheduler treats speculative work the same as mandatory work.

The main work in secondary Or-parallelism is in "committed choice languages". Such
languages nondeterministically choose a single unifiable clause to reduce. (This choice is
irreversible, so there is no backtracking like in sequental Prolog.) The only Or-parallelism,
then, in such languages is the one-solution Or-parallelism in choosing the unifiable clause
to reduce. This Or-parallelism can be non-trivial, however, because the guard part of
clauses must be evaluated before clause selection. There are three main committed choice
languages with such Or-parallelism. PARLOG [Clark] allows Or-parallelism as long as

64 CIAPTER 3. RELA..2D 1VORK

compile-time analysis can determine that multiple environments arc not required (i.e. there
is no interference). Guarded Horn Clauses (GIIC) jUeda takes a run-time approach. GIIO
allows Or-parallelism with the proviso that if execution of a clause could lead to interference
(by binding a variable non-local to that clause) the execution of the clause suspends until
eithef 8omc other proces binds the variable or the clause is selected for commitment. Flat
GIIC (FGIIC) is a subset of GIIC that does not require suspension because of restrictions
placed on the guard part of a clause. Flat Concurrent Prolog (FOP) (Shap2j (an evolution
of Concurrent Prolog which did allow all-soluLion Or-parallelism) allows one-solution Or-
parallelism because, like GIIC, it places restrictions on the clauses so that suspension is
never required. None of PARLOG, GI[C, and FOP have any means for controlling Or-
parallelism.

The work of Chikayama et al (Chikal offers a higher-level approach to speculative com-
putation in logic languages. They describe an operating system for a parallel inference
machine (PIM). This operating system, called PIMOS, provides features which, although
not designed for speculative computation yer se, may be used for supporting speculative
computation. PIMOS is implemented in an extension of the KLI language, which is a vari-
ant of FGICC. The main extensions useful for speculative computation are priorities and
shaens, managers for controlling computation which have much in common with the groups
we present in Chapter 5. Both goals and clauses may have priority annotations attached for
directing operating system scheduling. All priorities apply only locally within a processor
cluster, though, not globally, since PIM is a loosely-coupled multiprocessor. A shoen con-
trols the execution of a specified goal in two ways. First, each shecn has a priority range,
specified at creation time, in which all the computation c"'mprising this goal executes. That
is, all the computation within a shaen executes with priorities relative to the priority range
of the shocn. In the current implementation the priority range is fixed once a shoen is cre-
ated. It is not clear if the goal and clause priorities are also fixed. Second, a sheen controls
the resources - such as time and space - allocated to the shoen's computation according
to the meta-program "script" of the sheen. This resource control feature may be used to
abort computation. Presently, execution time is the only resource that a shun can control.

Shens can be nested; thus shoens provide modularity.

Problems

The main problem with KL1 is lack of demand transitivity. Three factors contribute to this.
First, the priorities - at least the sheen priorities - are (currently) fixed. Second, there
is no priority interaction across processor clusters. Third, there is no explicit relationship
between the demander of a logic variable's value and the computation which will produce
the variable's value. Thus there is no general way to determine which computation to
demand Therefore logic variables are fundamentally different from the futures and tasks
in Multilisp in a way that poses difficulty for speculative computation.

3.9. SUMMARY 65

3.9 Summary

Aside from Epstein's work (based on our work), Burton's work (not implemented), and
Chikayama's sheens, these approaches to speculative computation address only half the
issues: they all address reclamation, but fail to address controlling computation. Further-
more, the computation reclamation in all these approaches is inadequate in one way or
another: either it is too slow (garbage collecting tasks), irreversible, or has no support for
naming descendants (explicit methods).

We want to put these criticisms in perspective though. Our implementation has prob-
lems too - notably the same lack of modularity and lack of speculative streams for which
we have criticized other work. See Section 6.3 for a discussion of deficiencies. However, our
implementation is a subset of a model for speculative computation, which we present in
Chapter 5, which does address these problems. The applications we describe in Chapter 8
support our statement about computation reclamation. In the Emycin example described
in Section 8.3, aborting useless computation is important but garbage collecting tasks is
totally inadequate: no garbage collection occurs during execution.

66

Chapter 4

Approach

In this chapter we discuss our approach to the four main problems described in Chapter 2.

4.1 Controlling Computation

Computation control is a scheduling problem. Optimal solution of scheduling problems
is often difficult (both in determining the solution and implementing it) even if sufficient
information is available. They have an annoying tendency, for example, to be NP-hard. In
most cases in practice we do not have sufficient information available and we must either
resort to simplifying assumptions to make the optimal scheduling problem tr:rtable or
abandon the optimal scheduling problem and pursue heuristic/ad hoc scheduling policies.
We pursue the former in Chapter 2 and the latter here.

We believe the most important control is some way to order the allocation of resources

to speculative qomputations in accordance to their relative "promise". This dimension of
control specifies the order in which tasks are allocated available resources, especially the
order in which tasks are selected for running if more resources become available or selected
for suspending if fewer resources become available. However, ordering is not sufficient. We
believe there are three other important dimensions of control over resource use:

1. amount of resource use (i.e. total resource use over time)

2. rate of resource use (i.e. instantaneous resource use)

3. duration of resource ue

Given the singular importance of ordering we believe that ordering and the last three

'In accordunce with our assumption in Section 2.2 we concentrate exclusively on processor resources.
These remarks apply equally, however, to other rasources, such as memory.

67

68 CHAPTER 4. APPROACH

dimensions should be independent. The last three dimensions are related, and hence de-
pendent, as follows:

aAi = riCt)dt

where aA1 is the amount of resources devoted to activity j, comprised of tasks in the set
Ai, ri(t) is the rate of task i as a function of time, and d, is the duration of task i.

As discussed in Section 2.1, control must include demand transitivity in the ordering
and some mechanism for modularity.

Our ideas for controlling computation are still ad hoc and heuristic. To move our ideas
past this point we need to do two things. First, we need to study scheduling problems to
determine optimal scheduling policies and the required control. We hope to either apply
these results directly or extrapolate them to practical situations. In Chapter 9 we start by
analyzing optimal scheduling of simple pors and pands. Second, we need to study many
more applications to determine the desired control in different situations. In the rest of this
thesis (excepting Chapter 9) we focus on basic control mechanisms.

4.2 Reclaiming Computation

From the discussion in Section 2.2, it should be obvious that we need support for reclaiming
computation. Reclamation without support, as exemplified by explicit checking, is too
awkward and suffers from difficulties such as unknown function calls, nesting, and sharing
discussed in Section 2.2.1. While reclamation without support may be useful in simple
cases, it lacks expressive power in general.

Ideally, we would like both irrelevancy detection and reclamation to be completely im-
plicit at the end-user level. The problems with side-effects discussed in Section 2.2 interfere
with this utopia. A more pragmatic goal is the reduction of non-essential explicitness at
the end-user level. There are two different ways of achieving this goal. The first way is by
making the irrelevancy detection and reclamation implicit at the system level. Garbage-
collecting tasks is an example of this approach. The second way is by hiding system-level
explicitness with suitable user interfaces, such as libraries and macros. Context-driven recla-
mation is an example of this approach. We call these two approaches implicit reclamation
at the system level and explicit reclamation at the system level.

4.2.1 Implicit reclamation at the system level

The only way to perform implicit reclamation at the system level is by garbage-collecting
tasks. We reject this method because we believe it is too inefficient. In implicit reclama-
tion, irrelevant computation is reclaimed when a garbage collection occurs, which is too
infrequently and is too costly, we argue.

4.2. RECLAIMING COMPUTATION 69

The exact point in the garbage collection cycle at which irrelevant computation is re-
claimed depends on the garbage collection mechanism. There are three main garbage col-
lection methods: mark and sweep, reference counting, and scavenging. Reference counting
cannot reclaim cyclic structures so we do not consider it further.

Mark and sweep collectors can employ either a 'conservative" strategy or a "lenient"
strategy. These strategies are described in (Baker78b] (though the terminology is ours). In
the conservative strategy, all running tasks are stopped when marking begins and no task
may begin running until it has been marked as accessible from the root pointer set (and
therefore relevant). Thus irrelevant computation is reclaimed at the initiation of a garbage
collection cycle. (The associated computation state is not reclaimed until the end of the
garbage collection cycle.) In the lenient strategy, a task may continue to run after the
initiation of the garbage collection cycle until either the task attempts to mutate a marked
object or the marking phase of the collector reaches the task. In either case, the task must
suspend until the collector marks the task as accessible from the root pointer. If this never
occurs, the task's storage is recycled by the sweep phase - i.e. the task is irrelevant. Thus
in the lenient strategy irrelevant computation is reclaimed at any point up until the end of
the sweep phase.

Scavenging (i.e. copying) collectors can only use the conservative strategy of stopping
all tasks prior to a garbage collection flip. A task may resume running, though, when it is
copied into newspace (indicating that it is accessible from the root pointer set and hence
relevant).2 Thus irrelevant computation is reclaimed when a garbage collection flip occurs.

Therefore the frequency of implicit computation reclamation depends on the the period
between garbage collection cycles. Normally garbage collection is invoked when free storage
is nearly exhausted, which typically takes a fairly long time. Irrelevant tasks might well run
to completion in this time. The exact time depends on the size of the heap, the amount
of non-garbage surviving the last garbage collection, and the rate of storage allocation, i.e.
consing. Thus the frequency of implicit computation reclamation is tied to factors that do
not necessarily have anything to do with the creation, rate of creation, or even presence of
irre'evant computation! An application which does little consing, for instance, will have
an inordinately long inter-garbage collection period and hence very infrequent computation
reclamation.

There are three ways we could address the problem with the infrequency of implicit
reclamation:

1. We could invoke garbage collection more frequently (than is required by storage con-
cerns).

This is unattractive because it incurs the cost of garbage collection, more frequently.
Generally, garbage collection is performed as infrequently as possible for good reason:

2A lenient strategy whereby a task In oldspace continues to run will not work in general since there is no
room left In oldspace for the task to allocate storage. (Presumably that Is the reason a garbage collection
was initiated).

70 CHAPTER 4. APPROACH

to amortize its large cost over as much time as possible. The cost consists mainly of
two components:

(a) the synchronization cost
This is the cost, in wasted processor cycles, of getting all the processors to agree
to begin the garbage collection cycle. This cost depends on the synchronization
mechanism and the number of processors, so we consider it fixed.

(b) the tracing cost

This is the cost, in time, to trace all pointers from the root pointer set s and
thus determine the transitive closure of accessible, i.e. non-garbage, objects.
For scavenging collectors, the tracing cost includes copying accessible objects to
newspace.
Thus the tracing cost, which dominates the cost of garbage collection, depends
on the amount of non-garbage, i.e. number of objects retained after ,.rbage
collection. This means the tracing cost is independent of the amount o f storage
allocated (and independent of the number of irrelevant tasks)l Thun the cost
per object allocated is minimized by garbage-collecting as infrequentlv as possi-
ble. By collecting more frequently than this, we pay a greater cost per object
allocated.

In addition, many objects survive for a relatively long time. Tracing these objects
thus represents a fixed cost incurred at every garbage collection.

(A mark and sweep collector has a third component: the sweep cost. This is the time
to sweep all of memory, return all unmarked objects to the free list, and clear the
marks.)

Therefore garbage-collecting more frequently both incurs the fixed cost of garbage
collection more frequently and increases the cost per object allocated. This increased
cost may possibly overshadow the benefit of reclaiming irrelevant tasks more quickly.
Even worse, 'we pay this cost independent of the number and existence of irrelevant
tasks.

2. We could invoke the garbage collector explicitly whenever we believe there are enough
irrelevant tasks to justify the cost.

Even if we can determine when we have irrelevant tasks (this may not be too hard in
certain situations), this approach has two problems:

(a) We have to trace all accessible objects whether tasks or not.

The cost depends on the number of non-garbage object and is independent of
the number of irrelevant tasks. There is no reason why we should have to perform
the expensive tracing of all objects just to isolate irrelevant tasks. At the very
least we should only have to search through task objects.

'With incremental garbage collectors tracing may be interleaved with processing.

4.2. RECLAIMING COMPUTATION 71

(b) It is unattractive if we are continually generating irrelevant tasks.
In this case, this approach reduces to the previous one where we invoked the
garbage collector more frequently.

3. We could use generation garbage collection [Lieberman].

Generation garbage collection can significantly reduce the cost of garbage collection by
reducing the average number of accessible objects that must be traced. This reduces
the tracing cost. The synchronization cost, however, is unchanged.' This reduced cost
does not entirnly solve the problems with implicit reclamation. Four major problems
still remain:

(a) The reclamation time is still coupled to the consing rate.
Thus the reclamation time can still be inordinately long if there is little or no
consing. The reduced cost of generation garbage collection makes it reasonable
to garbage collect more frequently than dictated by storage concerns, but the
garbage collection cost is still non-zero (see next point), thus limiting reclamation
frequency. Also, as noted previously, this cost is independent of the number and
existence of irrelevant tasks.

(b) We still must trace all accessible objects in a generation, whether tasks or not.
We still have to examine a large number of task objects in a generation which are
not irrelevant tasks or even tasks. Thus the cost per irrelevant task collected is
still high, especially if there are few irrelevant tasks. This still makes it expensive
to explicitly invoke the garbage collector and to run the garbage collector more
frequently than necessary for storage concerns.

(c) An irrelevant computation might still take a long time to be reclaimed if it or
an inaccessible object that points to it (directly or indirectly) gets promoted to
older generations.

(d) A task may still be irrelevant but accessible.

Thus generation garbage collection merely scales down the costs, but the costs are

still significant.

Note that we cannot allow tasks to be promoted to older generations like other objects
otherwise we will get irrelevant tasks in older generations. Such tasks will take a
very long time to be reclaimed unless we garbage collect all generations frequently,
destroying the advantage of generation garbage collection. This has the consequence of
increasing the number of objects we must trace in the youngest generation to reclaim
irrelevant tasks. However, the additional garbage collection cost incurred is probably
small.

Implicit computation reclamation tries to satisfy the difrerent goals of computation
reclamation and storage reclamation with the same mechanism, garbage collection. Com-
putation reclamation must have a small response time to minimize resource wastage and a

'Although one might be able to combine generation garbage collection with area garbage collection
[Bishop).

72 CHAPTER 4. APPROACH

small running time to avoid discouraging its invocation. This implies the garbage collector
must run frequently. (The only thing we can do for the the running time within the implicit
framework is employ generation garbage collection.) By contrast, the chief goal of storage
reclamation is a small cost. This ;mplies the garbage collector must run as infrequently as
possible. The conflict in these goals, weans a compromise in which computation reclamation
is either infrequent and hence costly in resource wastage or frequent and costly in overhead
(or a muddle of both).

We escape this dilemma by employing mechanisms appropriate to the different recla-

mations. For computation reclamation we employ explicit reclamation and for storage
reclamation we employ conventional garbage collection: thus, orthogonal mechanisms for
orthogonal purposes.

Garbage-collecting tasks is still attractive as a backup reclamation mechanism, as pro-
posed in Qlisp. We need some way, however, to declare a task relevant for the effects it may
perform, such the ufcr effect" declaration in Qlisp. Alternatively, we could list such tasks
with a "registry" so that they remain accessible.

4.2.2 Explicit reclamnatlon at the iys~xiP, level

As mentioned in the previous section, we employ explicit reclamation. The essential support
required for explicit computation reclamatior is:

1. Some way to reversibly reclaim a task's computation resources, i.e. allow the task to
resume if necessary.

A task's computation resources can be irreversibly reclaimed, i.e., the task terminated,
only if it can be proven that neither the task's result nor any effects it might perform
are required by any other task. Side-effects make this determination very difficult,
if not impossible in some situations. In large systems, for example, it can be very
difficult to understand all the ways in which computations can interact. The ability
to resume a task after its computation resources have been reclaimed provides an
important safety net.

2. Some way to automatically name all the descendants of a task declared irrelevant.

The possibility of unknown function calls makes it impossibly difficult for a user to
track all the descendants of an irrelevant task. Ideally, we would like the system to
manage all the descendants of an irrelevant task, automatically declaring them all
irrelevant when their parent is declared irrelevant.

To achieve the first support, we stun s a task when it is declared irrelevant; that is,
suspend execution of the task as discussed in Section 2.2.6. thereby reclaiming its compu-
tation resources (which we argued earlier is the important issue), while still maintaining

aTcrminology introduced by Goldman and Gabriel in (Gold8a].
'By suspend here, we mean a pause in a task's execution, not the state of suspension caused by the

Multilisp suspend primitive.

4.3. SIDE-EFFECTS 73

its computation state. Thus the task may be restarted later if it is touched by a relevant
task (or if it must perform a relevant side-effect). Instead of stunned, we say that a task is
stayed when its computation resources have been reclaimed. To declare a task irrelevant is
to stay the task, and the act of declaring a task irrelevant is called staying the task.

The second support is a compromise between explicit and implicit irrelevancy detec-
tion; we have explicit naming for 'root" irrelevant tasks and implicit naming for all their
descendants.

In later chapters we present details on our expli,:it computation reclamation mechanism
and describe how we prevent run-away tasks and how we deal with the problems posed by
side-effects.

4.3 Side-effects

Of the three issues described in Section 2.3, we explicitly address only the third issue, the
relevance of side-effectsq. We do not address the issues with persistence and interference,
i.e. name conflicts. We provide no special support for non-persistence, such as rolling-back
tasks and undoing their effects, nor do we provide special support for no-irterference, such
as Uencapsulating" tasks.

We do not provide thesa mechanisms for two reasons. First, we do not believe that
persistence and interference issues are important in our intended application domain. We are
primarily interested in functional speculative computation and nondeterministic speculative
compditation. We are not focusing on optimistic computation and we are not pursuing
applications such as databases involving significant atomic transaction-like activity. Rather,
we are interested in applications with few side-effects - we believe that side-effects should
be used sparingly. Furthermore, of those applications with side-effects, we believe few
actually require roll-back or encapsulation. In many situations we believe that roll-forward
strategies, such as we discuss in Chapter 7, would be just as effective as roll-back strategies.

Second, we believe that these mechanisms are too expensive in a medium grain par-
allelism mudel such as Multilisp. If side-effects requiring non-trivial non-persistence and
non-interference are a frequent and important part of an application, we believe that other
coarser-grained paradigms are more appropriate and efficient than that provided by Multi-
lisp.

Users which require non-persistence and/or non-interference must provide the function-
ality themselves. Non-persistence and non-interference are basically just special forms of
synchronization and thus they can be built on top of the low level synchronization prim-
itives we do provide. This could be a very painful approach in some cases, such as for
checkpointing and .ommitting (especially with nested activities), so we do not recommend
it.

We address the relevance of side-effects in Chapter 7.

74 CHAPTER 4. APPROACH

4.4 Errors and Exception Handling

We ignore in this work the issues associated with errors and exception handling introduced
by speculative computation. We do so mainly to reduce the scope of the work to manageable
proportions. There still remain questions on how to best treat errors and exception handling
in conventional (i.e. mandatory) parallel computation.

To handle errors and exception conditions, we believe that related computations should
be organized into units (such as the groups we mention later). Then when an error or
exception occurs all the tasks in the unit should be halted and a debugger entered. This is
the model of error handling in Mul-T [Kranz]. 7 It has two desirable features. First, all the
tasks in the affected unit are halted. This allows the user to investigate the state of related
tasks, any of which might have actually caused the error. It also prevents related tasks from
generating a cascade of errors as a result of the first error or running indefinitely because
an errant task failed to perform some action. This last part is important for curtailing
speculative computation if a "control" task encounters an error. Second, only the tasks in
the affected unit are halted. Thus, unrelated taska may continue running.

Ve believe that errors and exception conditions in irrelevant tasks should be handled
just as in relevant tasks, the rationale being that a user would (or perhaps should) always
want to know when an error occurs. We can imagine instances where this might not be the
case but we regard such instances as pathologic].

The two main issues in extending the Mul-T error handl'ng model for speculative com-
putation are adding nested units and from a user's point of view, ensuring that speculative
task controllers and controllecs are in the same unit. Mul-T currently supports only one
level of units, at the read-eval-print-loop level.

4.5 Summary

Optimal control of s'ltic computation is a difficult scheduling problem, so we focus
on eurist'c control. Two essential components of control are demand transitivity and
modularity. In the next chapter we present a model for controlling computation which

includes these two components.

We employ e.,plicit computation reclamation at the system level. Implicit computation
reclamation, i.e. garbage collection, is too slow. We achieve explicit reclamation by causing
tasks to be stayed, which suspends task execution thereby reclaiming processor resources. A
stayed task may be restarted, so this reclamation is reversible. This reclamation is accessible
to the end-user as either context-driven reclamation or user-directed reclamation, but with
automatic naming of all descendants to avoid the problem of managing descendants of
unknown function calls.

7Our "units' are called groups in the Mul-T model. Mul-T's groups should not be confused with the
groups we introduce later, although they are isimilar In design and purpose.

4.5. SUMMARY 75

Of the issues with side-effects, we only address relovance (in Chapter 7). Woe ignore
errors and exception handling.

76

Chapter 5

A Model for Speculative
Computation

Speculative computation involves both eager and demand-driven components. The eager
component is obvious: we start computation before it is required. As discussed in Section 2.1
two assumptions make this eager component non-trivial. First, not all the computation needIt required. Second, there are insuflicient resources available to perform all the pending
computation simultaneously. The issue, then, is how to make the moat efficient use of
the limited resources. Wc want to perform as much of the computation as we can before
the computation is actually demanded. Also, we must have come way to add and jettson
speculative computation as the ebb and flow of mandatory computation leaves more and
less resources, respectively, available for speculative computation. Hence, the importance
of the ordering that we talked about earlier.

The demand-driven component is less obvious but just as important. This component
arises because a speculative computation may be demanded by other computation. For
example, a speculative computation may be demanded by a mandatory computation. More
important, though, is the interaction of speculative computation, i.e. one speculative com-
putation demanding another. The issue in this case is how to incorporate such interactions
into the eager-based scheduling of computation. The specific issues, mentioned in Chapter
2, are demand transitivity and modularity.

A model for speculative computation must incorporate both components. The model
must include some way to express the scheduling of computation and some way to exp-re-as
the interacticn of computation while maintaining demand transitivity and modularity. We
present a model for speculative computation in Multilisp that meets these requirements.
This model is also suitable for other task-based (i.e. multiple independent threads of com-
putation) parallel languages.

77

78 QIIAPTER 5. A MODEL FOR SPECULATIVE COMPUTATION

5.1 The General Sponsor Model

Our model for speculatire computation in a task-based language like Multilisp is based on
the concept of sponsors dscribcd In Section 3.1. To run, a task needs certain computation
resources, like processing pcwer (the use of a processor) and memory. The allocation of
resources to tasks in our model is controlled by the attributes that a task po=eez. Spon-
sors supply these attributes. EElch task may have zero or more sponsors which contribute
attributes to that task. Thus, the sponsors of a task collectively determine the computa-
tion resources allocated to that task. A task without a sponsor does not run. Later we will
describe the attributes in our model but for now they remain abstract.

Ve call the attributes that a task possesses effective attributes. The effective attributes
of a task are determined by some function combining the attributes of each of the task's
sponsors. In symbolic form, the relationship is

cffattrib(T) = F(SI(T), S2(T), ... , S(T)) (5.1)

where cffatfrib(T) denotes the effective attributes of task T and S(T) denotes the ith

sponsor of task T. We call equation 5.1 a combining-rulc.

5.1.1 Sponsor types

There are four types of sponsors in our model:

1. external sponsors

These sponsors supply absolute attributes. We discuss later why we call these sponsors
external.

2. toucher sponsors

When one task touches another, the toucher task sponsors the touchee task with the
effective attributes of the toucher task. This sponsorship is removed when the touchee
task determines its future object (and hence no longer needs sponsorship).

3. ask sponsors

A. ,ask may be sponsored by any other task. The sponsor attributes in this case
are the effective attributes of the sponsoring task. Toucher sponsors are merely a
special case of task sponsors, except that the addition and removal of toucher sponsors
occurs automatically with touch and determine respectively, whereas the addition and
removal of task sponsors is always explicit. Task sponsors offer a way, for example,
for a parent task to sponsor its children, which is something we expect wil! be useful.

4. controller sponsors

The thrre previous types of sponsors are all passive - they merely act as fixed at-
tribute sources or pass on attributes from other sources. Controller sponsors, by

5.1. TIB GENERAL SPONSOR MODEL 79

Figure 5.1: por with a controller sponsor

contrast, are active. As their name suggests, they are really controllers or managers.
They receive sponsorship and distribute it dynamically among the tasks in their con-
trol domain according to some built-in control strategy. The control may reflect
changes in sponsorship, changes in the domain tasks, and changes in other resource
demands in the system. Controller sponsors implement the complex control that we
cometimes want, as perhaps with por, as discussed in Issue 4 in Section 2.1. Figure
5.1 depicts the disjunct tasks of a por with a controller sponsor. The circles are the
tasks and the diamond is the controller sponsor. The arrows denote sponsorship.
The controller sponsor sponsors each disjunct task according to the sponsor's control
strategy. This control strategy decides how to distribute attributes from tasks spon-
soring the por to the por disjuncts, such as when a task demands the por result (and
hence sponsors the por) and when a disjunct completes or a disjunct spawns another
descendant task.

5.1.2 Sponsor networks

The collection of sponsors and tasks for some computation form a sponsor nctwork. A
sponsor network is a directed graph representing the sponsor and task relationships for
some computation. There are two types of nodes in such a network: tasks and controller
sponsors. For controller sponsors the node represents the dynamic control embodied by such
sponsors. The directed arcs represent sponsorship; they have weights representing sponsor
attributes. These arcs emanate from a sponsor source (any of the four types of sponsors)
and impinge on a task or conroller sponsor. The weights on all the arcs incident on a task
node are combined according to the combining-rule to yield the effective attributes of the
node. The weights of all the arcs incident on a controller node are combined according to
the node's controller policy.

Figure 5.2 shows an example sponsor network. As before, the circles are tasks and the
diamond is a contrcller sponsor. The short horizontal arrows represent external sponsors;
the solid arrows represent touch sponsors; and the dotted arrows represent task sponsors.
External sponsors are the source of all attributes. These attributes are distributed in a
dynamic fashion by passive toucher sponsors according to the dynamic interconnection of

80 CHAPTER 5. A MODEL FOR SPECULATIVE COMPUTATION

Figure 5.2: A sponsor network

sponsors by touching, by passive task sponsors according to explicit connection, and by
active controller sponsors according to their control strategy. The external sponsors can
be thought of as external sources of attributes for this sponsor network; hence, the name
"external".

A sponsor network is dynamic: during the course of a computation, nodes come and go
corresponding to the lifetime of tasks, arcs come and go corresponding to sponsor relation-
ships, and arc weights change as sponsors change their sponsorship. The network may be
disconnected, as ddpicted in Figure 5.2. The network may also be cyclic.

Cycles can arise in two ways. The first way is by & touch cycle, in which a chain of
tasks all touch each other, forming a cycle of touch sponsors. All the tasks in a touch cycle
are deadlocked: each is blocked waiting for the next to produce a result. Deadlocked tasks
are always a possibility (unfortunately) in Multilisp - especially in the presence of side-
effects i - and the user must take care to avoid deadlocks.2 We consider these devdlocks
as pathological, i.e. as errors to be avoided.

The second way that - cycle can arise is by a non-touch cycle of sponsors. The aw, ,
to explicitly describe arbitrary sponsor relationships with task and controller sponsors,
unlike with toucher sponsors which implicitly follow touching relationships, provides the
freedom to directly connect sponsors in cycles. A cycle in a sponsor network is semantically

'In the absence of 4ideeffects, deadlocked tasks can only occur through the use of letrac.
21f the deadlock concerns only irrelevant tasks, the user can simply Ignore the deadlock.

5.1. TIE GENERAL SPONSOR MODEL 81

meaningless, but nevertheless errors ay occur occasionitly as the consequere of allowing
arbitrary sponsor relationshipq. We purpceely do not want to curtail expressive power by
restrictiug the possible sponsor relationships.

Thus in both cases, a cycle in a sponsor network is an error condition, but we do not
want to restrict sponnors to maka R3s occurrence impossible.

5.1.3 Attribute propagation

Whenever a change occurs in a sponsor network, such as a change in connectivity - a
sponsor added or removed from a task - or the attributes of a sponsor change, the effective
attributes of a task may chtnge (depending on the combining-rule employed). Any change
in the effective attributes of a task may in turn lead to changes in the tasks sponsored
by that task, and so on. We call this recursive process of updating attribites attribute
propagation.

The state of a sponsor network is given by its connectivity and the effective attributes at
each node. For a fixed connectivity, attr-bute propagation mnves the network state towards
equilibrium, where equilibrium is defined as the fixpoint of the equations determined by
the connectivity, the combining-rule, and the external sources. (We assume that equilibria
exist and are all stable. This depends on the combining-rule and the controller sponsor
strategies. We will not address this issue, except in the choice of combining-rule in Secticn
5.2.1.) That is, attribute propagatior, solves tho network equations in a distributed manner,
analogously to a neural network.

For now, we idealize the sponsor network by assuming instantaneous attribute propaga-
tion. Thus the network responds immediately to any changes in external sponsors, controller
sponsors, or connectivity. Under this view, the network moves from one stable equilibrium
state to another and during its sojourn in an equilibrium a rate the network Ls static.

With instantaneous attribute propagation, the only divergence, i.e. failure to :each a
fixpoint, that can arise is due to connectivity cycles like those discussed earlier.3 We call
this static divergence. If attribute propagation is not instantaneous, we can also get dy.
namic divergence, which may occur with or without static divergence. We discuss dynamic
divergence in the next chapter in the context of an implementation.

Finally we can see, with the aid of Figure 5.2, what our sponsor model is all about.
On one hand we have a collection of external sources supplying attributes which are redis-
tributed by the task and controllei sponsors to achieve some desired scheduling. This is
the eager component. On the other hand, the top-level task places an external demand on
the network for a result which is propagated by the toucher (and also controller) sponsors.
This is the demand-driven component.

3Since instantaneous attribute propagation already presupposes termination of attribute propagation.

82 CI1APTER 6. A MODEL FOR SPECULATIVE COMPUTATION

5.2 The Special Sponsor Model

We now consider a specialization of the sponsor mode! with two different types of attributes.
Each sponsor in this model contributes:

1. the desired ordering of the sponsored task with respect to other tasks, and

2. resource limits, such as the rate at which the task may run, the duration the task my
run, and the amount of memory the task may use.

Tasks are scheduled for execution according to their ordering and the resource limits apply
once the task is executing, rhat is, a sponsor provides a "ticket" which specifies a place
in line and a "permit" which specifies the amount of service that the ticket holder may
receive. A task presents its tickets to the scheduler in a bid for service, and if accepted,
the task receives resources not exceeding that mentioned in the permits. (We discuss later
how a task's possibly multiple tickets and permits from different sponsors are combined.)
Note that a sponsor in our model does not actually provide computational effort like the
sponsors in Hewitt's model (see Section 3.1). In our model, it is the scheduler which finally
provides computational resources, and in the order specified by the tickets. This difference
reflects our belief that ordering is the most important control for speculative computation.

For concreteness and without loss of generality, we describe the ordering of tasks by
numerical priorities. Thus the "ticket" that a sponsor provides is a priority, which may
change with time. For the scope of this chapter, priorities are merely a convenient way
of describing the ordering of tasks; they are not necessarily the means by which the user
specifies this ordering.

The effective attributes for each task are comprised of an effective priority and effective
resource limtits A task is scheduled for execution according to its effective priority. A task
can preempt all lesser-priority tasks for resources. The effective resource limits are the
limits in effect when the task executes.

5.2.1 Combining-rules

Each attribute conceptually has its own combining-rule. We focus on the combining-rule
for priority in this section since priority is the most important attribute in our model. We
treat priority as orthogonal to ,he other attributes.

The combining-rule for priority combines the sponsor priorities of a task to yield the
effective priority of that task. Let Fp(denote the combining-rule for priority. We want
this combining-rule to have three properties.

5.2. TIE SPECIAL SPONSOR MODEL 83

Demand Transitivity

The first property is demand transitivity. When one task touches another, we want the
priority of the touches to be at least that of all its touchers. If cffpri(i) is the effective
priority of task i and touch(i) is the set of tasks touching task i, then this formalizes as the
statement

Vj r touch(i) * effpri(i) _ effpri(j) (5.2)

for all tasks i. Demand transitivity is very important. It prevents the desired ordering
from being subverted when a high priority task blocks on a low priority task. This property
is essential for toucher sponsors. In a sense, all sponsors indicate a "demandn for a task
and thus we would like the combining-rule for all sponsor priorities to obey the demand
transitivity property expressed in equation 5.2 (where touch(i) becomes aponsor8(i), the
set of tasks sponsoring task i).

Combinxdrg-rule tolerance

The sensitivity of a combining-rule to changes in the sponsor priorities affects the frequency
and number of combining-rule updates. Ideally we would like a combining-rule that is some-
what "tolerant" to changes in the sponsor priorities while still having sufficient expressive
power, such as obeying Demand Transitivity. The notion of combining-rule sensitivity is
best understood by example.

Consider the simple additive combining-rule:

effpri(i) = Z p(j)
jEsponsoro(i)

where p(j) is the priority contributed by sponsor j. Any change in any sponsor priority
causes a change in the effective priority. This change must propagate through the touch
network until reaching a terminal node (a task that is not touching another). (We call this
priority propagation.) This combining-rule is maximally sensitive.

By contrast, with the max combining-rule

effpri(i) = max p(j) (5.3)
=jepontora(,)

the effective priority is tolerant of changes in the non-maximal sponsor priorities. Thus
many changes in the sponsor priorities can conceivably occur without causing a change in the
effective priority and further propagation. The max combining-rule filters out "irrelevant"
changes in sponsor priorities.

Convergence in presence of cycles

As stated before, we do not want to outlaw cycles in a sponsor network. The issue then, is
the behavior of attribute propagation in the presence of such cycles in the sponsor network.
Specifically, attribute propagation should not cycle endlessly and fail to converge.

84 CHAPTER 5. A MODEL FOP. SPECULATIVE COMPUTATION

Figure 5.3: Touch cycle with addition combining-rule

This implies that the combining-rule must not be strictly increasing in its arguments.
The simple addition combining-rule, for example, is non-terminating. Consider the example
in Figure 5.3. Because the addition combining-rule is strictly increasing in its arguments,
equilibrium is never attained; the effective priority of each task in the cycle increases without
bound. When augmented with some sort of ricle detection, like a counter, this combining-
rule is terminating, but then termination does not represent a fixpoint (equilibrium) of the
network equations.

The max combining-rule, by contrast, is terminating, assuming instantaneous updates,
since it is not strictly increasing in its arguments. Furthermore, termination implies equi-
librium (at least locally within the cycle). (See Section 6.1.1 for an example of why the max
combining-rule requires instantaneous updates for termination in the presenco of-cycles.)

5.2.2 Max combining-rule

The max combining-rule, given by equation 5.3, has the three properties given above and
two other properties. First, the max combining-rule is the least upper bound combining-rule
to satisfy demand transitivity. By Icast upper bound, we mean that for any combining-rule
function, FpO, for priority which satisfies demand transitivity we have

.p2121---IXis,... ,Xn) _> maxC i, x,.. i
for all priorities xi (which is just demand transitivity). Thus the max combining-rule never
yields a priority higher than its input priorities. Second, the max combining-rule is time-
invariant so it is simple to implement. Because of these five properties, we choose the max
combining-rule as the combining-rule.

Note that this choice of max combining-rule does not apply to controller nodes since
they can have arbitrary combining-rules depending on the node controller policy.

5.2. TlE SPECIAL SPONSOR MODEL 85

5.2.3 Combining-rules for other attributes

Unlike with the priority attributes, the desired properties for the resource attributes are
open to debate, in part because the choice of resources is open to debate. We intend the
sponsor model as a general model for speculative computation so we do not want to lock any
particular choice of resources and their combining-ru!es into the model. Indeed, we view the
sponsor model as really a spectrum of models with different resources and combining-rules.
We feel that rate and duration are important control parameters for any model so we use
them as example resources.

We advance the following combining-rule as one possible combining-rule for resource
attributes.

Let S;(T) denote the ih sponsor of a task T. Let p(i) be the priority contributed by
Si(T) and r(i), be the limit in resource j contributed by SI(T) (i = rate, duration, etc.).
Finally, Iet effpri(T) be the effective priority of task T and effri(T) be the effective resource
limit for resource j of task T. Then the combining-rule is

Vj effri(T) = r(i)j

where i is the sponsor for which p(i) is maximal. That is, the maximum priority sponsor
is essentially the "owner" of the task and supplies the resource limits. This sponsorship
is removed when any of the resource limits are attained. For example, sponsor Si(T)
is removed when the duration of task T while "owned" by Si(T) exceeds r(i)d o. The
highest priority remaining sponsor then becomes the owner, adjusting effpri(T) as necessary
and providing new resource limits.

With this combining-rule, sponsors are really governors, whic&, meter ouit resources until
any of their resources is exhausted. (Some resources, like rates, are not really resources
thenselves, but a specification on resource use, so they cannot be exhausted like a duration.
The metering analogy still applies to these "resources" though.) In this respect, our sponsors
are like Hewitt's sponsors, but unlike Hewitt's sponsors4 only the top-prioricy sponsor (of
a task) performs this metering. Thus our sponsors have a two-layer hiorarchy of ordezing
and resource metering.

The above combining-rule for resources has the property that the resource consumption
of a task is always subservient to the task ordering; a task never receives more resources
than dictated by its ordering. For instance, the ordering of tasks to resources is neyer
subverted by the number of sponsors a tasks has. However, we are noL ready to cast this
combining-rule in stone. One anomaly with this combining-rule is that the effective resource
limit can decrease if the effective priority increases. the maximum-priority sponsor could
change to one with a smaller resource limit. This anomaly generally poses no problems
except for some resources, like rates. it is not clear it makes s,!nse to have a task's effective
rate decrease when the task is touched by a higher priority task. One alternative to deal
with this anomaly is to sum the resources contributed by each sponsor to determine the
effective resource limits, i.e.

Vj effri(T) r (i)i

86 CHAPTER 5. A MODEL FOR SPECULATIVE COMPUTATION

5.3 Computation Reclamation and Side-effects

The max combining-rule allows us to handle explicit computation reclamation in a very
simple and uniform fashion within our sponsor model. To declare a task irrelevant we
merely have to remove its sponsors. If we mistakenly declare a task irrelevant then we
automatically re-sponsor it when we later touch it, so there is no problem with deadlock as
suggested in Section 2.2.2.

We can even handle reclamation in the presence of side-effects. The problem posed by
side-cffects is deadlock: a task which may perform a relevant side-effect may be mistakenly
declared irrelevant. To solve this problem, we simply have to extend our idea to ensure that
our demand for a side-effect ensures sponsorship of the computation that will perform the
side-effect. We follow up on this idea in Chapter 7.

5.4 Groups

Controller sponsors Are the cornerstone of modularity in our sponsor model. We call a
controller sponsor and its collection of sponsored tasks a group. The controller sponsor
introduces and manages a now control space for tasks in that group. The local control
provided by the controller sponsor insulates the group from outside, and thus provides
modularity. The controller sponsor manages:

1. the ordering of tasks within the group (ordering management)

The controller sponsor defines a new ordering space for the group and manages the
ordering within the group with respect to the ordering outside the group. Thus the
priority of tasks in a group may be local to that group. Groups may be nested with all
local priorities relative to the immediate parent group or to other groups, depending
on the group controller sponsor. This gives us the modularity to solve the problems
with the traveling salesman problem and the Boyer Benchmark: we can simply create
a group for each of these applications with local ordering. These groups can then be
embedded in any fa:shion desired in other speculative computation.

2. the allocation of resources within the group and the distribution of resources from
sponsorship outside the group (sponsorship management)

The controller sponsor receives sponsorship supplying ordering and resource limits
(attributes) from outside the group and controls the ordering and the allocation of re-
sources (such as amount, rate, and duration of computation) through the distribution
of attributes. Sponsorship management includes the control of the ordering within
the group. (The interaction of ordering inside the group with the ordering outside the
group falls under ordering management.)

3 the interaction of the group with computation outside the group (interaction manage-
ment).

54. GROUPS 87

Through its ordering of group computation, distribution of resources, and interaction
with extra-group computation, a controller sponsor effects a control policy. NVe let this
control policy be arbitrary and depend on any system sta e. For concreteness, lot us assume
we can specify the control policy by a program.

5.4.1 Ordering space management

Ordering space management involves translating the group ordering space to fit appropri-
ately in the external ordering space.

For ordering-based speculative computation, such as in the Boyer Benchmark and the
traveling salesman problem, the desired ordering management often amounts to uniform
translation, i.e. uniformly translating the entire ordering space of the group. In such cases,
we want to treat the group as a single point in the ordering space external to the group while
still retaining the ordering space within the group. Thus the controller sponsor must merge
the group's internal ordering space into the external ordering space and when a group is
demanded by a task or another group, the group's ordering space must be translated to fit
within the appropriate place in the demander's ordering space. The diagram in Figure 54
makes this clear (assuming the ordering is expressed by priorities). To preserve the desired
ordering expressed by the priorities, all the priorities in group G, must be translated to it
between the priorities of tasks T,,., and T,+1 in group G2. Mere scaling, as would result
if the task priorities were actually implemented as relative priorities, is insufficient because
there is no way to restrict the range of priorities to be between the priorities of T,-, and
T, i in G2. Note also that the priority space of G2 must be managed to allow for future
descendants to have priorities b6tween that of Tn-j and Gi and between that of G, and
Tn+1.

Uniform translation, as depicted in Figure 5.4, is not always sufficient for ordering man-
agement, even in ordering-based speculative computation. For example, we may not always
want the lowest priority task in a group to take precedence over the highest priority task
in the next lowest priority group. In this case, ordering management becomes consider-
ably more complicated since the group must be treated as multiple points in the external
ordering space. Hence, different parts of the ordering space may be translated differently
and interaction with other controller sponsors may be necessary to coordinate the overall
desired ordering. See Section 5.4.3 on interaction management.

5.4.2 Sponsorship management

For multiple-approach and precomputing speculative computation we require active control
of ordcring and allocation of resources. For multiple-approach speculative computation,
we must be able to allocate resources among-t the multiple approaches, controlling the
relative ordering, rate, and duration of approaches. For precomputing.based speculative
computation we must be able to control the resources we expend on precomputing versus the
resources to perform the main-stream computation (and versus the resources to precompute

88 WAPTER S. A MODEL FOR SPECULATIVB COMPUTATION

G2

T2

/1 \

-, / priority space for G2 \

pri riey space for Gou r

Figure 5.4: Uniform translation of group ordering

5.4. GROUPS 89

%,. .group boundary

~ \

%

Figure 5.5: An example of por with groups

different quantities.)

As an example, consider (por El E2 Es). We want this por contained in a group for two
reasons. First, we want modularity - we want to be able to use this por anywhere without
concern for its internal structure. Second, we want the dynamic control provided by a
controller sponsor to distribute any changes in sponsorship for the por amongst the disjuncts
and to possibly reallocate sponsorship amongst the disjuncts as disjuncts complete. Let us
assume that each disjunct, E, comprises several tasks. Then we might also like modularity
for each of the disjuncts so we can control each disjunct independent of the others. Figure
5.5 illustrates por with a group for the overall por and a group for eah disjunct.

5.4.3 Interaction management

The exchange oi information between controller sponsors is sometimes necessary for proper
allocation of resources. Consider the following two examples.

Multiple controllers

Suppose a group may be sponsored simultaneously by multiple controllers, i.e. the group
may be in the control domain of multiple controllers. Then problems can arise if the
the allocation of resources amongst the activities sponsored by a group is critical and that
group's controller is unaware of the influence of another controller within its control domain.
In this case, the other controller may disrupt the intended resource allocation.

As a specific example, consider two por groups sharing a disjunct, as illustrated in Figure
5.6. Disjunct E2 is a group, with its own controller, which is in the control domain of both
por controller sponsors. If both por controllers are unaware of their joint sponsorship of
E2, they both may decide that it is best to allocate all their resources to evaluating E2 .

9o CUAPTER 5. A MODEL FOR SPECULATIVE COMPUTATION

Figure 5.6: Two pors sharing a disjunct

However, if we use the combining-rule described earlier, one of thes. cn4x l¢ers becomes the
Uowner* and contributes all the resources, while the other one sits idle. With coordination,

controllers I and 2 may agree to sponsor uay E and EA, respectively.

Thus sometimes feedback is necessary between the controllers allocating resources and
the activities consuming resources so the controllers can compensate for multiple sources.

Nesting

Suppose we have (por E, E2) and E2 turns out to be another por (say (,or E3 Eg)).
We would like the controller sponsors of these two pors to coordinate their allocation of
resources so the net effect is no different than that in (por E, FA E4). Similarly, if we have
nested pors and pands, we would like the respective controller sponsors to communicate.
Strict modularity - i.e. modularity without in',eraction of controller sponsors - does not
yield optimal performance in general. See, for instance, Example 4 in Section 9.4.

These examples show that sometimes we need communication and cooperation between
controller sponsors. To support such communication and cooperation, a controller sponsor
must be able to supply information to external agents about its resource requirements as
well as consume resources. This information might take the form of the expected time
until completion given a certain amount of input resources. See the scheduling problem
formulation in Section 9.1.2 for example.

5.4.4 Groups as black boxes

As Figures 5.4 and 5.5 hint, a group is intended to encapsulate a single activity - a
collection of related tasks working towards a common goal - which produces a single
result. The controller sponsor is the gatekeeper by which the activity is demanded by other
activities; it is the interface between the ordering space of the group and other ordering

5.4. GROUPS 91

/

Figure 5.7: Non-root touch interaction

spaces. Or put differently, the controller sponor makes an activity appcar as a black
box to activities outside that group, thus enforcing modularity. While this is the way in
which groups are intended, it is not entirely realistic due to two problems: non-root group
interaction and partial results.

5.4.5 Non-root group interaction

We refer to the controller sponsor as the 'root" of a group. If all interaction with a group
is through the root, everything is fine: the controller sponsor can propagate sponsorship
in some appropriate manner to the members of the group.4 This interface interaction is
enforced only by programmer discipline. We do not force al! interactions to occur via the
root since it may be useful occasionally to break this abstraction barrier. This leads to
possibility of non-root interaction with a group.

We distinguish two types cf non-root interaction: sinSls control domain interaction and
multiple control domain interaction.

Single control domain interaction

In this type of interaction a task within a group (and thus within the control domain of that
group) receives sponsorship from an external sponsor, or a toucher or task sponsor outside
the group. Figure 5.7 illustrates an example. Task T in group Gi is touching task T2 within
group G2. Control domain interaction can destroy modularity. The ordering of a task is
no longer entirely local within a group. In Figure 5.7, the local ordering established within

4 Or rather, it is the responsibility of the controller sponsor to distribute sponsorthip in some appropriate
manner within the group.

92 CIIAPTER 5. A MODEL FOR SPECULATIVE COMPUTATION

GG

Figure 5.8: Non-root touch interaction

group G2 can be subverted by the toucher priority contributed to T2 from T1. One can
argue that this is the natural and expected consequence of non-root interaction and thus-
such interaction should be avoided if o.,e wants to maintain modularity. At least demand
transitivity is maintained by the max combining-rule.

A serious problem arises, however, if a task receiving sponsorship from outside its group
spawns descendants. The problem is how these descendants receive sponsorship and how
they are controlled. Normally when a task is first spawned within a group it receives
sponsorship from the group controller sponsor. Later, the task may also be sponsored
by touch and task sponsors, but the task must be spawned first. (The task may also ba
sponsored by an external sponsor but that reverts the situation to that discussed I.: the
previous paragraph.) However, with non-root interaction, wo could end up with a situ-tion
where the group has no sponsorship with which to sponsor a task spawned within the group.
Consider, for example, the fo'* wing scenario involving the non-root interaction in -igure
5.7.

Suppose that group G2 is, one of the disjuncts Ej in the por in Figure 5.5 and
suppose that this disjunct is r- 'red for the por (some other disjunct returns first).
The por controller sponsor thus .s sponsorship for E and thus all the tasks in group
G2 :-top executing. Now suppose t task T1 in group GI touches task T2 in group G 2,
thus sponsoring Ti and causing it to restart. Further suppose that task T2 spawns several
tzsks, say T3 and T4 , to help compute its result. Figure 5.8 shows this situation.

Who sponsors tasks T3 and 24? It cannot be their group, G2 , because it has no sponsor-
ship to offer. They could remain unsponsored until they are required by T2, at which time
they will be touched and thus sponsored. However, this is not a good solution since it fails
to exploit available parallelism. Another possibility is for T2 to sponsor T3 and T4 via task
sponsors. However, this only works if the non-root interaction involving T2 was anticipated.
(Ordinarily, the group sponsor might sponsor T3 and T4 for T2.) The obvious solution is
to for group G to sponsor these tasks. (We reject external sponsors for the reasons given

5.A. GROUPS 93

previously.)

In fact, wo could put these tasks in group G1. Even though these tasks may be related
to the other tasks in C2 , we could argue that there is no harm in putting them in group
C1 since the abstraction barrier of G2 hs already been blurred by the first interaction in
touching task T2. lowever, this idea is stymied by two possibilities. First, group G could
lose its sponsorship and G2 could regain its sponsorship. Then we would have the original
problem again: who sponsors the descendants of T3 and T47 Second, there may be many
tasks, of many different groups, touching task T2. In which of these groups do we put T3
and T4?

To address these problems, we make two observations:

1. Tasks T3 and T4 must remain sponsored by group G2.
Even thrugh G2 may have no sponsorship to offer at present, G2 could receive spon-
sorship at some point in the future when there may be no other sponsorship for T3
and T4. (Group G, could have lost its sponsorship.) G2's sponsorship of T3 and T4
does not preclude sponsorship by others.

2. Tasks Ts and T4 must be sponsored by every other group touching T2 (for the same
reason as in point 1).

Thus every group Gi which sponsors a task like T2 in a group must sponsor all the
descendants of that task.

This means that one task, like T.j, could be in multiple control domains, which brings
us to the next type of non-root interaction. We could arrange, via the max combining-rule,
for exactly one of the groups G, sponsoring T2 to be the "owner" of all the descendants of
T2 at any point in time. Thus all descendant tasks would effectively ba within only one
group and thus one control domain at any point in time. This group would always be the
maximum-priority sponsoring group. This arrangement is too complicated, however, since
still other groups can touch the descendant tasks.

Multiple control domain Interaction

In this type of interaction a task within the control domain of one group receives sponsorship
from a controller sponsor outside the group. This puts the task within the control domain
of multiple controllers. Although this interaction has the same flavor as with the multiple
controllers described in Section 5.4.3, it is different in a crucial regard. The interaction
here involves tasks in multiple control domains, not groups in multiple control domains, as
before. The interaction here is beneath the granularity of groups and thus the tasks have
no controller sponsors to sort out the multiple control sources.

Multiple control domain interaction at the task level does not necessarily cause any
problems because the sponsorship of the multiole cuntrollers is duly combined according
to the combining-rule. However, as with groups, problems can conceivably arise if the

94 CHAPTER 5. A MODEL FOR SPECULATIVE COMPUTATION

T,
01 2

/ - /
// //

/T

Figure 5.0: Group splicing

allocation of resources amongst tasks in a group is critical since another controller may
disrupt the intended resource allocation.

A solution

The best solution, of course, is to arrange for non-root interaction ahead of time and make it
root interaction by providing controllers at the interface points, i.e. subdividing the groups.
Obviously this takes some foresight and thus is not always practical, but we cannot expect
arbitrary control with arbitrary group interaction.

The next best solution, for otherwise impractical cases (and as a 'safety net"), is to
create a new group dynamically when a non-root interaction first occurs. For example,
when task T in Figure 5.7 touches task T2 in group G2, we create a new group rooted at
T2 and move T2 affd all its descendants from G2 to this new group. Figure 5.9 illustrates
this procedure, which we call group splicing.

Group splicing attacks the problem of non-root interaction by converting non-root inter-
action into root interaction. By automatically providing a group for non-root interaction,
this solution provides:

1. A group for all the descendants of a non-root sponsored task.

We argued earlier that this is essential. Group splicing is less complicated than the
group owner solution described earlier.

2. A controller for interfacing non-root tasks to othor control domains.

This takes care of the problems with non-root multiple control domain interaction.

There are still problems with group splicing, however. One problem is specifying the
controller sponsor for the new group created by group splicing. Another problem is that

5.4. GROUPS 95

all the descendants of a non-root interface task are moved into a new group. Sometimes a
different splicing strategy may be more appropriate. We are not very concerned by these
problems, though, since non-root interactions should not be encouraged in the first place;
we are merely trying to provide some reasonable action when they do occur.

Non-root interaction occurs because a task escapes the control domain represented by
its group. This containment escape occurs in two ways: by not returning results through
the root (as may occur, for example, with side-effects) and by returning partial results.

5.4.6 Partial results

The result that a group returns may be just a partial result, a skeleton to be filled in later.
For example, a per group might return a placeholder (i.e. future object) for the winning
disjunct or a group to sort a list may return the head of the list and a placeholder for the
rest of the list. How can we return a partial result while still sponsoring any subresults?

One way to handle partial results is to simply unsponsor all the tasks in the group when
the group returns a result, even a partial result. Thus all computation on any subresults
stops until the subresult is actually demanded by some task external to the group. This
method, which we call lazy result return, circumvents the issue of maintaining sponsorship of
subresults after the group returns a result. The obvious lack of parallelism with this method
makes it unacceptable. Furthermore, in turning eager computation into lazy computation at
result return time, this method operates counter to conventional, mandatory-style Mltilisp.

Thus we must actually continue to sponsor subresult6 once a group returns a result.
This eager result return raises the issue of non-root interaction. A task outside the group
could touch one of the subresult placeholders, causing non-root interaction. This poses all
the problems discussed in the previous section, like loss of modularity within the group.
To prevent these problems, we must somehow convert possible non-root interaction to root
interaction.

There a number of different approaches that we could take.

One approach is to design group interfaces so that groups have no subresults, i.e. so
there is no export of unfinished computation from a groups. For instance, one could argue
that in the list sort example both the list sort and list consumer should be in the same
group. This approach is not always possible, such as if many different activities consume
the sorted list.

Another approach is the group splicing discussed earlier. Whenever a subresult is de-
manded, its task and all its descendants are moved into a new group. This would take care
of the list sort example - when first touched, each list element would get a new group by
group splicing. Performing this group splicing could be quite expensive.

To do better we need to impose more structure on the group result. Instead of return-
ing an arbitrary result, a group could return a group object consisting of the result and a
controller sponsor for the subresults. Any sponsorship for one of the subresults, by derefer-

96 CHAPTER 5. A MODEL FOR SPECULATIVE COMPUTATION

encing the group object to get a subresult placeholder, would be directed to the controller,
rather than to the subresult. For instance, in the por example given above, por would
return both a placeholder and controller sponsor for the disjunct. Then the sponsorship
represented by any touch of the placeholder would be directed to the disjunct group.

This approach packages the information needed for continuing to sponsor the subresults
in the result itself so that only the group needs to know the structure of its result. We
cannot expect the result consumer to know the structure of the result beforehand, except
in special circumstances.

5.5 Summary

In this chapter we proposed sponsors as a means of controlling and allocating resources
for speculative computation. Sponsor networks provide both eager and demand-driven
components to scheduling. A key idea of the sponsor model is groups for organizing related
activities for naming and control purposes. This idea of groups is similar to the groups in
Mul-T [Kranz] (which we called units in Section 4.4), but our groups incorporate active
control agents and can be nested.

The sponsor model provides a way to view speculative computation and a framework for
the control of speculative computation. The actual control that a sponsor network should
provide remains an area ,or future work.

Chapter 6

The Touching Model

In this chapter we describe a subset of the special sponsor model, which we implemented,
called the touching model. Touch sponsors play the central role in this model, hence the
name. The touching model also has external sponsors and a very primitive typo of controller
sponsors, but no task sponsors. The only attributes in this model are priorities, which we
use to effect the desired ordering of tasks: there are no resources or resource limits in this
model. This touching model is purposely very simple to serve as a quick prototype in
exploring and evaluating the sponsor model idea for speculative computation.

6.1 The Touching Model

Each task in the touching model has

1. a single external sponsor which provides what we call the sourcc priority of the task,
and

2. an effective priority.

The external sponsor, toucher sponsors, and controller sponsors of a task T combine to
determine the task's effective priority according to the max combining-rule, as described by
the following formula:

effpri(T) = max(aourcepri(T), max (effpri(j)), max (cntlpri(k, T)))
jEtouch(T) kecontrollers(T)

where effpri(i) is the effective priority of task i, sourcepri(i) is the source priority of task i,
c,-tpri(ij) is the priority that controller i contributes to task j, touch(i) is the set of tasks
touching task i, and controllers(i) is the set of controller sponsors for task i. We describe
a primitive form of controller sponsors in Section 6.2.

97

98 CHAPTER 6. THE TOUCHING MODEL

All priorities are in the interval (0, MAX]. Tasks are scheduled for execution according
to their effective priority: only rurniable tasks of the highest effective priority run at any
point in time. Tasks with effective priority 0 are not runnable; but their computational
state is retained (until it becomes inaccessible and is garbage-collected) and thus the task
may be restarted if its effective priority becomes non-zero.

6.1.1 Priority propagation

The sponsorship of a task may change due to a change in existing sponsors, the addition of
now sponsors (by touch or the addition of a controller sponsor), and the removal of existing
sponsors (controller sponsors only). Whenever such a change occurs, the effective priority
of the task is updated if necessary according to the max combining-rule. Any change in
the effective priority of this task may require a change in the effective priority of any tasks
sponsored by this task, and so on, down the sponsor tree. (Chains of toucher sponsors -
which we call touch chains - form the branches of a tree and controller sponsors serve as the
forks in the tree.) We call this recursive process of updating priority priority propagation.

Priority propagation occurs implicitly in response to a change in sponsorship. For ex-
ample, whenever a task touches another, the toucher implicitly sponsors the touches aid
implicitly propagates any change in priority. Unlike in the idealized model in Chapter 5,
priority propagati'z' in the touching model is not instantaneous: determining if a changL. "
sponsor priority cnanges the effective priority and updating the effective priority, if neces-
sary, takes nonzero time. We perform priority propagation eagerly, propagating any changes
immediately until termination, and in a depth-first manner. This eager priority propagation
is blocking: a computation which (implicitly) initiates priority propagation cannot continue
until the priority propagation terminates.

With non-instantaneous priority propagation we get two sources of (dynamic) diver-
gence, i.e. failure to reach a fixpoint of the priority equations:

1. New changes in priority may occur faster than they can be propagated so the network
priority equations are always unsatisfied. By new changes, we mean the origination
of a change in priority, not the propagation of some past change. A change in priority
originates at a node n due to a change in source priority for node n, a change (due to
some change in sponsor policy) originating in a controller sponsor sponsoring node n,
or a change in connectivity affecting node n - either some task touching node n or
the addition (removal) of a controller sponsor to (from) node n.

2. Priority propagation may not terminate.

The first type of divergence results in a certain lack of control: the constant disequi-
librium means that control decisions may be based on misinformation and the inability to
track new changes means that control decisions may be obsolete (and incorrect) by the time

'Conceptually, speaking. See Section 10.1.

6.1. THE TOUCHING MODEL 99

they propagate to the appropriate parts of the network. Eager priority propagation limits
this damage by blocking the progress of an activity originating a priority change until that
change is fully propagated. Thus the rate of priority propagation bounds the rate of new
changes. This advantage is the reason we chose eager priority propagation.

The second type of divergence is especially a problem with eager priority propagation,
although it can also happen with "lazy" priority propagation. (With lazy priority prop-
agation we might only perform a little propagation at regular intervals of time and still
never terminate the propagation.) Non-termination of eager priority propagation causes
two problems: the activity originating a priority change is blocked forever and resources
are committed forever to propagating the change. We call this type of divergence priority
propagation divergence.

Priority propagation divergence

In the touching model, priority propagation divergence occurs due to cycles and "run-away
create and touch".

Cycles

For the touching model, the max combining-rule does not ensure termination of priority
propagation in the presence of cycles due to the non-instantaneous update of priorities in
the touching model. If perturbations in priority occur before full adjustment to an initial
perturbation, we can get non-termination with the max combining-rule.

Consider the scenario in Figure 6.1. First the network as shown in Figure 6.1(a) is in
equilibrium. Then the effective priority of task 1 changes from 5 to 10, say due to task 7
touching task 1. This then causes a change in priority to begin propagating around the
cycle. Suppose, though, that before this priority propagates entirely around the cycle the
effective priority of task 1 changes again, decreasing to 7 due to a decrease in the source
priority of task 7. This yields the situation depicted in Figure 6.1(b) with two waves of
priority changes propagating through the cycle. If both waves propagate at the same speed,
they continue to chase each other forever and never reach equilibrium.

Note that such non-terminating behavior with the max combining-rule requires:

* A directed cycle in the touching network

" Two or more propagations active simultaneously within the same cycle. At least one
of these propagations has to increase the effective priority and at least one has to
decrease the effective priority.

" Each of the propagations to occur with the same speed. In fact, there might be sizable
pressures for the propagations to synchronize and move in lock-step due to locks that
may be required to change the effective priority of tasks.

100 CHAPTER 6. THE TO UCHING MODEL

7 task
7

5 task 5 task 7

1 1

57

55
57

5 10

5

(a) (b)

Source priority of all tasks is 3 unless otherwise indicated.

Figure 6.1: Non-termination with max combining-rule

6.1. THE TOUCHING MODEL 101

Presently we do not worry about cycles in the touching model. As mentioned in Section
5.1.2, a cycl is an error condition in the first placc. However, there should be a reasonable
policy for handling such errors to avoid infinite cycling of priority propagation. One way to
handle cycle errors is to record the number of nodes encountered in a sponsor chain during
priority propagation. Then if the number of nodes exceeds some threshold, terminate the
priority propagation. This "bounded eager" priority propagation prevents infinite cycling of
priority propagation in the presence of cycles and can even lead to equilibrium in cycles, as
well as termination. Equilibrium arises when the first n- 1 propagators in a cycle terminate:
the nyh propagator will restore equilibrium (assuming it is not terminated prematurely by
the exceeding the node threshold) and terminate.

Run-away create and touch

The other way that priority propagation can fail to terminate in the touching model is for
a touch chain to grow faster (or as fast as) the rate of priority propagation down the chain.
For this to happen we have to continually create and touch new tasks. For example, task
i creates and then touches task i + 1, and task i + 1 creates and then touches task i + 2,
and so on, forever. We call this run-away create and touch. We regard it as a pathological
condition with low probability since it requires a non-terminating computation. In fact, we
ignore it.

0.1.2 Computation reclamation

The sponsor model provides an elegant framework for enplicit computation reclamation.
To declare a task irrelevant we just have to remove its sponsors; an unsponsored task does
not run. Moreover, this reclamation is reversible since the task may resume whenever
responsored.

We realize this method for explicit reclamation in the touching model as follows. To
declare a task irrelevant we set the source priority of the task to 0 and propagate any
resultar. change in the task's effective priority. We call this process staying. If the effective
priority of a task is 0, the task is not runnable (as described earlier); we say such a task
is stayed - its computational rwources have been reclaimed. Note that staying a task
("declaring the task irrelevant") does not imply that the task will be stayed ("considered
irrelevant") since the task could still have toucher or controller sponsors, indicating that
the task is relevant from the viewpoint of other tasks demanding its value. A stayed task is
unsponsored (setting a sponsor priority to 0 accomplishes the same thing as removing the
sponsor). Such a task .ay be restarted by responsoring it, i.e. by making its source priority
non-zero, by touching it with another (running) task, or by giving it a non-zero controller
sponsor - anything which makes its effective priority non-zero. Table 6.1 summarizes these
terms and conditions.

This method of explicit reclamation fits very nicely in the touching model; no new
mechanisms are required. One very important feature which falls out of the touching model

102 CHAPTER-6. THE TOUCHING MODEL

Informal term Technical term Action or condition
declare irrelevant to stay set source priority to 0 and propagate

declaring irrelevant staying process of setting source priority to 0 and
propagating

considered irrelevant stayed effective priority = 0

Table 6.1: Reclamation terminology

framework is that reclamation is reversible.

Finally, we see that the run-away task phenomenon is particular form of dynamic diver-
gence. We mention this phenomenon again in Section 6.2.

6.1.3 Priorities

The choice of priority to effect ordering was driven by pragmatics. Ideally we would like
a more direct (and declarative) means of specifying the desired ordering information. Un-
fortunately, it is not yet clear, except in special cases - such as first-in-first-out (FIFO)
ordering (or similar orderings based on task creation time) - how to concisely describe the
desired ordering.

Priorities are very simple and allow a groat deal of flexibility in expressing desired
orderings. For example, if tasks are allocated sparsely enough in the priority space, a
priority range can be associated with each task rather than a single priority. This range
may then be subdivided amongst the children of the task to obtain nested orderings. We
follow up on this idea in Section 6.4.3.

There are two problems with introducing priorities at the user level." The first problem,
as alluded to above, is that priorities at the user level increase the imperativeness that the
user/programmer has to deal with. The second problem is that priorities themselves lack
meaning; they are too abstract. They can only be understood operationally by changing
them and observing the effect(s) on program execution. In some instances it may be possible
to hide these problems from users with suitable user interfaces, effectively pushing the
imperativeness and lack of meaning into the domain of the library or interface author.

6.2 Language Features

Our aim was to provide basic primitives for speculative computation in the spirit of the
Multilisp model. The result is a relatively low level substrate that users can build on to
provide whatever interface they wish and deem appropriate for their application.

21here is no objectlen to using priorities strictly within the implementation, perhaps to Implement some
ordering mechanism.

6.2. LANGUAGE FEATURES 103

As discussed in Section 1.5, we had two important goals in this implementation. The first
goal was to retain the future construct and thus retain the spirit of the Multilisp model.
The second goal was to minimize the impact of our support for speculative computation
on the performance of conventional styles of computation. To accomplish this second goal
we distinguished mandatory tasks and speculative tasks. Mandatory tasks always have fixed
effective priority MAX (conceptually speaking - see Section 10.1) and cannot be stayed.
Speculative tasks can have any effective priority e (0, MAX] and may be stayed. Thus
mandatory tasks correspond to the tasks in conventional styles of computation and spec-
ulative tasks correspond to the tasks in speculative styles of computation. However, these
are merely operational terms and do preempt our definitions in Section 1.1: a mandatory
task may perform speculative computation and a speculative task may perform mandatory
computation. Because mandatory tasks cannot be stayed and cannot be preempted, they
car, be implemented more efficiently than speculative tasks.

The top level, read-eval-print-loop, task is a mandatory task. All the children of a
mandatory task are also mandatory tasks, provided that the children are created with
future.

(spec-±uture exp pri) creates a speculative task with source priority pri to evaluate exp
and immediately returns a placeholder for the result, just as future does. All the children
of a speculative task are also speculative. If a speculative task executes future, the, child
task is a speculative task with its source priority inherited from its parent.

Orthogonal to this notion of inheritance is the notion of contagion. If a mandatory task
touches a speculative task, the speculative task becomes mandatory.

(make-group exp pri) is the same as spec-iutur* except it returns a group object.
A group in this implementation is merely the name for a make-group task and all its
descendant tasks, i.e. the tree of tasks rooted by a make-group task. There is no controller
sponsor associated with these groups and thus these groups lack modularity. (The addition
of full controller sponsors is a project for future work.)

(stay-group group) performs the staying operation on all members of the group group,
i.e. it stays all group members. It returns an unspecified value. Since a group includes the
make-group task and all its descendants, stay-group automatically names and stays all
descendants. This dynamic naming of of descendants eliminates the difficulty of explicitly
tracking descendants and solves the problem with tracking descendants spawned by un-
known function calls, stay-group essentially integrates the "killer tasks" idea of Grit and
Page [Grit], mentioned in Section 3.2, into the touching model.

We mentioned earlier how the run-away task phenomenon is a particular form of dynamic
divergence. We prevent the run-away task phenomenon by suspending the creation of any
new tasks in a group while any staying is in progress in the group. We discuss the details
in Section 10.4.

(my-group-ob,) returns the group object representing the executing task's group. A
task's group is always the task's newest ancestral group.

104 CHAPTER 6. TIlE TOUCHING MODEL

(make-class class-type) creates and returns a class object. A class is collection of
tasks and a sponsor in the fashion of the groups mentioned in Chapter 5. Unlike with the
group created with the make-group construct, the members of a class are arbitrary and
not necessarily all descendants of a common parent. We have implemented three types of
classes, each of which corresponds to a different type of primitive controller sponsor:

1. class-all, in which the class sponsor sponsors all the members of the class,

2. class-any, in which the class sponsor sponsors an arbitrary member of the class, and

3. class-pqueue, in which the class sponsor sponsors only the top-priority task in the
class.

The class sponsor receives its sponsorship from one or more sponsors (see makes-uture
below) combined according to the max combining-rule.

(add-to-class obj class): if obi is an undetermined future object f or a class object c,
then add-to-claus adds either the task associated with f or the class object c to the class
clas. Otherwise, add-to-class does nothing. It returns an unspecified value.

(remove-from-class obj class) functions like add-to-class but instead removes obi
from the class class. In addition, when a task terminates, it is automatically removed from
any classes to which it belongs.

We implemented these two primitives by "touching" and *untouching," respectively, the
given task (or class) with the class sponsor of the given class. Thus classes are a relatively
straightforward extension of the touching mechanism. Section 10.3 describes details.

We added an optional argument to the make-f ature construct described in in Section
1.4: (make-future &optional class) creates and returns a placeholder and sponsors the
class class (if specified) with the maximum-priority task blocked on the placeholder. This
sponsorship is removed when the placeholder is determined.

Chapters 7 and 8 provide examples demonstrating and discussing the use of these con-
structs. Appendix A presents further details on these constructs.

6.3 Deficiencies

All the deficiencies of the touching model result in one way or another from the lack of full
controller sponsors. We did not implement full controller sponsors mainly because we were
not sure what form the controller sponsors should take. We also had reservations about their
run-time cost and implementation difficulty. We wanted to keep the first implementation
simple so we could implement it quickly and spend ample time experimenting to assess its
merits and deficiencies. We originally planned a second implementation (see [Osborne])
to incorporate our findings but the first implementation and experimentation took much

6.3. DEFICIENCIES 105

longer than we expected. In the remainder of this section we concentrate on the major
deficiencies we found.

The biggest deficiency in our touching model is lack of modularity: neither our groups
nor our classes with primitive controller sponsors provide modularity. Class sponsors
merely distribute sponsorship to a collection of tasks without maintaining any local or-
dering amongst the tasks. We can still do a lot without modularity, as the examples in
Chapter 8 demonstrate, provided that there is only one speculative activity in the system.
This may be acceptable for a prototype, but is certainly unacceptable for a production
system. What we said above for controller sponsors applies here too. Plus, we did not
appreciate the importance of modularity when we began this work.

The next biggest deficiency is inadequate treatment of group interaction. Because of the
primitive controller sponsors and lack of modularity, this is only a problem with staying.
Let us present this argument before discussing the problems with staying.

We have two types of 'groups" in the touching model. The first type is that created
with make-group. These groups lack controller sponsors of any kind. The root of such a
group is the make-group task. Thus root interaction, such as touching or class-sponsoring
the group, amounts to just touching or class-sponsoring the make-group task, which is
no different than any other task. The interaction is not distributed to any other tasks
in the group because the group has no controller sponsor and thus lacks moduilarity. If
the make-group task requires the results of other tasks in the group to produce the group
result, then the task must specifically demand the results by touching or class-sponsoring
the other tasks - there is no eagerneas component aside from the source priorities. Non-
root interaction is no different from intra-group interaction. Since these groups have no
controller sponsors and hence no control domain or modularity, inter-group sponsoring of
non-root tasks does not cause control domain interference anddoes not destroy modularity.

The second type of "groups" in the touching model are classes. Classes are basically
stripped-down versions of the full-fledged groups discussed in Chapter 5. The root of a class
is the class sponsor. The primitive controller sponsors available as class sponsors preclude
modularity but do serve as "group" interface points, allowing root "group" interaction:
class sponsorship is distributed to the class members according to the class type. As with
make-group groups, non-root interaction with classes is no different than interaction with
any other task and thus presents no difficulties.

Thus root and non-root interaction present no problems with either type of "group"
since controller sponsors are either non-existent or too primitive to provide modularity or
real control domains - no problems, that is, except for the interaction of make-group
groups while staying. Intergroup touching and class-sponsoring creates confusion over who
is responsible for staying tasks.

Consider the following example. Suppose we stay group GI, thereby setting the source
priorities of all the tasks in G1 to 0, and as a result all the tasks in 0i are stayed. Now
suppose task T2 in group G2 touches task T, in G1 , thus sponsoring T, and causing it to
become unstayed. Who is responsible for staying T, should G2 be stayed? Obviously T2

106 CHAPTER 6. TIE TOUCHING MODEL

Figure 6.2: Intergroup touching in presence of staying

since it is the one sponsoring T1. Indeed, when T2 is stayed, its effective priority of 0 will
be propagated to Ti and T, will be stayed too. But now suppose after being touched by
T2, Ti spawns a task Ts with a non-zero source priority 83, as illustrated in Figure 6.2.
Who is responsible for staying s should G2 be stayed? Now we can argue that either T
or T2 should be responsible since TI, directly, and T2, indirectly, caused the creation of T3 .
Hokwever, neither of these tasks are sponsoring Ts: Ts is eponsored entirely by itt external
sponsor providing its source priority. Thus T will not be stayed asa consequence of staying
T2 or T1. (Ts is a descendant of T, and hence a member of G, and noiqi2.)

The problem is there is no mechanism to remove the source priority of Ts. The obvious
solution is to eliminate this source priority and sponsor T3 by T or T2. However, this is
unsatisfactory. T3 must be able to run even if T2 never touches T3. Thus at the least, T1
must sponsor T3. Now how does T1 sponsor T3? Unless T1's code calls for touching Ts, the
only way to sponsor Ts in the touching model is by a class sponsor. However, T, has no
way to know, in general, that it will be touched and thus has no incentive to put Ts in a
class sponsored by T1.

(The ideal way to solve this problem is to sponsor T3 by Gj's controller sponsor and
then splice a new group out of G1 rooted by T1 when T2 touches Ti. However, we do not
have full controller sponsors.)

Another solution is to have all the descendants of a task like Tj be a member of all the
groups touching T1. Thus staying any of the groups will surely stay descendants like T3 .

This is overkill, however. If all the descendants of T1 are required, then staying C2 would
needlessly destroy any ordering established by the source priorities of T1'a descendants.
This is really example of the multiple control domain interaction problem.

The solution we adopted is to have each task "owned" by the group supplying the
maximum priority sponsor. The effective owner of a task, until sponsored by a toucher
or class sponsor, is the effective owner of its parent at the time of the task's creation.

6.4. EXTENSIONS 107

Staying a group now involves staying all that group's effectively owned tasks as well as
direct descendants. This solves the "unstayable" descendants problem, illustrated in Figurn
6.2, and the overkill problem. However, making the effective owner that of the parent at
creation time is an arbitr&ry choice that leaves further problems. We leave these problems
for the reader to ponder. There seems to be no good solution to these problems other than
group splicing, which we did not implement in our prototype.

Another deficiency is that class sponsors lack an eager component. They have no internal
source of sponsorship, like from a source priority, and thus must await sponsorship from
another source, such as when the class result is demanded. This reflects the fact that a class
sponsor is passive and merely distributes received sponsorship rather than taking an active
role and negotiating with other sponsors for sponsorship. The touching model suffers from
lack of active agents for implementing dynamic control, such as discussed in Section 2.1 for
per.

As a final deficiency, the touching model does not address the issues with partial results
(see Section 5.4.6) at all.

6.4 Extensions

In this section we describe various ways in which we believe the touching model should be
extended.

8.4.1 Controller sponsors

The most important addition is more advanced controller sponsors. At a minimum we need
some way to enforce modularity.

6.4.2 Resource attributes

We need to add resource attributes to achieve other dimensions of control like duration,
especially.

8.4.3 Priority ranges

For modularity, we would like to have hierarchies of priority spaces, in which each priority
space has its own local ordering relative to the priority of its parent. We call this nested
priorities. However, we also want to implement nested priorities efficiency. We can already
implement a flat priority space, as in our touching model, efficiently. One way to achieve
this objective is to embed nested priorities within a suitably large fiat priority space. This
amounts to allocating ;zk priorities within a virtual priority space.

108 CHAPTER 6. TIE TOUCHING MODEL

priority space
jjj j\ forG,

/ / I \ \
/ /

/ / \
// ,

/

priority spaces

for tasks D-

Figure 6.3: Ordering with priority ranges

The idea is to assign a priority range to each group and task. Each group and task
is then responsible for allocating its priority range amongst its children to achieve nested
orderings, as mentioned in Section 6.1.3. Figure 6.3 illustrates an example. Group Gi has
allocated its priority range amongst descendant tasks TI, T2, and group G2 such that G2 >-

T2 >- T , where >- indicates ordering. Group G2 has further allocated its priority range to
give a final ordering of T4 >- T3 >- Tz >- T I.

To give the illusion of infinite resolution in the priority space, we can "rebalanceu the
priority space when one or more priority ranges are smaller than some some threshold.
Rebalancing amounts to garbage-collecting the sparsely populated regions of the priority
space to redistribute to the more densely populated regions.

The combining-rule can be stated in terms of ranges by taking the maximum and min-
imum of all the input range endpoints.

The cost of priority ranges comes in migrating the tasks in a priority range due to a
change in ordering by the combining-rule or by a controller sponsor. Whole priority ranges
must be migrated to new positions as illustrated in Figure 5.4 in Section 5.4.1.

6.5. SUMMARY 109

0.4.4 Lazy priority propagation

There are two extremes in priority propagation: eager, in which we immediately propagate
as much as possible, and 1ay, in which we propagate incremiently, over regular intervals.
The hope with lazy priority propagation is that immediate propagation may not be essential
and indeed might be wasteful if the priority changes effected would immediately be obsolete.
Lazy priority propagation may be beneficial in reducing the number of priority updates, i.e.
eliminating useless updates, and in avoiding problems with cycles. However, these benefits
must be balanced against the costs of operating with the sponsor network in non-equilibrium
for a greater raction of the time. Ve should investigate lazy priority propagation.

6.5 Summary

The touching model is a subset of the special sponsor model, based on priorities and lacking
any resource attributes. Changes in priority are updated using eager priority propagation
which tends to minimize periods of divergence at the cost of non-termination in pathological
situations. Explicit reclamation fits within the touching model very elog,,antly by exploiting
the combining-rule and priority propagation mechanisms. The touching model has only
primitive controller sponsors and thus lacks modularity. The goal of the touching model
was to provide a simple model to experiment with and "sample the waters" of speculative
computation.

110

Chapter 7

Side-effects

As mentioned in Section 2.3, the main issue with side-effects is synchronization: side-effects
provide a means for tasks to interact and communicate outside the data dependency (and
implicit synchronization) mechanism represented by touching. Thus side-effects provide
a means for (explicit) intertask synchronization. The new issue raised by such intertask
synchronization in speculative computation is relevance: tasks may be relevant for the
potential synchronization represented by their side-effects.

In this chapter we examine the problems posed by side-effect synchronization in specu-
lative computation and solve these problems in the context of our touching model.

7.1 The Synchronization Problem

The synchronization problem posed by side-effects in speculativw computation is that one
task or a collection of tasks may be waiting for some event - for some side-effect to be
performed - by some other task without any way to demand that the event occur. For
example, when a task A stalls (blocks or busy-waits) waiting for some other task B to
perform a certain side-effect event (such as roleasing a lock or a semaphore, or explicitly
determining a future, or writing some shared variable), Multilisp offers no means for A to
contact B and "demand" that the event be performed. Consequently, if B has a lower
priority than A, A could experience substantial delays due to preemption of B by tasks
with priority less than A. Far worse is the possibility that B is stayed. Then A is definitely
deadlocked. Thus poor performance and deadlock can result from having no way to demand
a side-effect event.

7.2 Solution Outline

Task synchronization must obey the following property.

i11

112 CHAPTER 7, SIDE-EFFECTS

Property 1: No speculative deadlock Suppose that a program fragment which solves
a given synchronization problem involves ont, or more speculative tWks (tasks subject
to preemption and staying). If this program fragment is deadlock-free when all spec-
ulative tasks are replaced by mandatory tasks, then the original fragment involving
speculative tasks should also be deadlock-free, provided the synchronization is rele-
vant. We define the synchronization to be relevant if at least one task waiting for the
synchronization to occur is relevant. (Recall that in our touching model we consider
a task to be relevant if its effective priority is greater than 0.)

This property is essential. To address the performance issue, we desire that task syn-
chronization also possess the following two properties.

Property 2: Demand transitivity (Priority Inheritance) A task or tasks performing
some event for which other tasks are waiting should run at the priority of at least the
maximum priority waiter. That is, demand transitivity should be extended to all
situations in which a task or tasks is/are waiting for another.

Property 3: Priority access Access to mutual exclusion regions should be in priority
order.

Priority inheritance attempts to reduce the synchronization delay by giving synchronizer
tasks at least as much importance as the tasks waiting for them. Note that Property 2
implies Property 1. (We assume the scheduler cannot starve a high priority task in favor of
low priority tasks.) Priority access attempts to serve tasks in the order of their importance to
reduce average synchronization delay (weighted by pri -rity) and reduce the need for priority
inheritance. Although these two properties are reasonable goals, their implementation costs
must be balanced against their benefits. In several examples in this chapter we abandon
our pursuit of one or both of these properties.

7.2.1 Philosophy of solution

Solutions to the problems of side-effects have two flavors according to the manner in which
Property 1 is maintained (assuming that the tasks producing the synchronizing event can
be identified):

1. Roll-back

Tasks in the process of producing a synchronizing event are allowed to be stayed
but only after they undo any state changes they made that might otherwise lead to
deadlock.

2. Roll-forward

Tasks may not be stayed while they are in the process of producing a synchronizing
event for which other relevant tasks are waiting.

7.2. SOLUTION OUTLINE 113

Roll-back schemes have a number of problems. First, they have limited applicability.
They only work if some other task(s) will produce the synchronizing event after the original
synchronizing task(s) is/are stayed and rolled back. Thus roll-back schemes will work when
tasks compete for access to a mutual exclusion region but will not work for tasks blocked
waiting for some task to determine a placeholder or write some shared variable. Second,
roll-back schemes lack completeness. They address Property 1 and neglect Property 2.
(They may or may not address Property 3.) Without Property 2, a synchronizing task
can be preempted while other higher priority tasks wait on it, thus allowing unnecessary
synchronization delay. Third, roll-back schemes can be complicated to implement. If the
synchronizing task(s) involve(s) significant state changes, such as spawning a non-functional
task, restoring the state is non-trivial. Finally, roll-back schemes do not fit very well in our
touching model.

For these reasons, we do not consider any roll-back schemes here. Instead, we favor
roll-forward schemes which are more in spirit of our touching model, as should be obvious
shortly.

MultiScheme and Qlisp both support variations of the roll-back strategy (not necessar-
ily Jiuked to computation reclamation though). MultiScheme uses object finalization, as
described in Section 3.4 and in [Miller), and Qlisp uses the unwind-protect form described
in Section 3.5 and in (GabrF8].

7.2.2 Roll-forward solutions

To achieve Property 1 in the roll-forward paradigm (assuming the synchronization is solved
in a way that would be correct if all the tasks were mandatory) we need:

1. some way to recognize when the progress of a task is stalled waiting for some syn-
chronizing event,

2. some way to determine which task or tasks is/are responsible for performing the
synchronizing event (the synchronizer task(s)), and

3. some way - either a priori or dynamically upon recognizing 1 - to prevent tasks
identified in 2 from being stayed.

The first requirement is trivial when a task blocks on a placeholder or a semaphore,
but can be more difficult with non-blocking types of synchronization, such as spin-locks.
The second requirement is a key problem. Often the task(s) responsible for performing
the synchronizing event can be identified implicitly, such as in simple mutual exclusion
problems, but this is not always the case. Our approach in such cases is to explicitly
identify the responsible tasks.

There are a number of ways to meet the third requirement. The simplest is to make a
task "non-stayable" while it may be performing a synchrcnizing event. While very simple,

114 CIHAPTER . SIDE-EFFECTS

this a priori approach has two difficulties. First, it prevents a task from ever being stayed
while it is in a "critical region', even if no other task is waiting for it to exit the region.
Thus it may be too conservative. Second, and most important, the 'non-stayableu solution
does not prevent a task from being preempted while other higher priority tasks wait on it.
In other words, it fails to achieve Property 2.

Another a priori approach is to make the task *non-preemptab!ew while it may be
performing a synchronizing event. This condition may be stronger than required or desired
- we may want high priority tasks, such as mandatory tasks, to preempt low priority
synchronizing tasks. Thus this approach over-achieves Property 2. This drawback may be
quite acceptable, given the simplicity of this approach, if tasks are "non-preemptable" for
only a short time.

A third approach is the dynamic approach. It avoids under- or over-achieving Property
2 by parameterizing the preemption level of the synchronizing task(s) by the priority of
the tasks waiting for the synchronizing event. This approach is, of course, more compli-
cated because all the tasks involved in a synchronization event must communicate to find a
compromise preemption level for the synchronizing task(s). Furthermore, this must happen
dynamically in response to changes in task priorities. Nevertheless, in many situations the
dynamic approach is potentially more efficient than a priori approaches.

Most of the remainder of this chapter involves the extension of our touching model to
implement this dynamic approach. The basic idea is to sponsor the task(s) producing some
event by the tasks waiting for the event. In this case we propagate the priority of the
maximum priority task waiting for a synchronizing event to the task or collection of tasks
that will perform that event.

To complete our discussion on implementing Properties 1 through 3, we note that Prop-
erty 3 requires some way to control which waiting tasks are resumed after a synchronization
event occurs. This fits into our extended touching model fairly well.

7.3 Examples

To motivate further discussion, we look at concrete examples of common synchronization
mechanisms and their problems.

7.3.1 Locks

A lock is a shared variable which is tested and updated indivisibly to synchronize tasks
without blocking; the waiting, if any, is busy waiting.

7.3. EXAMPLES 115

;; initialize lock
(define &-lock (cons nil nil))

;; evaluate thunk while holding a-lock
(define (with-lock thunk)

(it (not (rplaca-eq a-lock 'It nil)) ; if car of a-lock is nil,
; atomically replace it by 'It

(begin (thunk)
(rplaci a-lock nil)) ; clear lock

(with-lock thunk))) ; spin until get lock

Figure 7.1: A simple spin-lock

Mutual exclusion - spin-locks

Figure 7.1 shows an example of mutual exclusion via spin-locks. Once a-lock is initialized,
any task calling with-lock will evaluate thunk in a mutual exclusion region.

The most obvious problem here is that a task may be stayed while evaluating thunk and
holding the lock. Thus other tasks may spin forever waiting for the lock. We could solve this
problem by either the a priori approach, in which a task is non-stayable or non-preemptable
while it holds the lock, or by the dynamic approach, in which the waiters propagate their
attributes to the task with the lock.

The a prioriapproach requires some means to indivisibly grab the lock and enter the non-
stayable/non-preemptable region. Otherwise, if the lock is grabbed first, the task may be
stayed before entering the non-stayable/non-preemptable region, or if the non-stayable/non-
preemptable rezion is entered first, the task may continue to spin once it has been stayed.
Of course, the task could spin in a loop where it enters the non-stayable/non-preemptable
region, attempts to grab the lock, and immediately exits the region if unsuccessful. However,
entry and exit of non-stayable/non-preemptable regions could be expensive so we want to
avoid the unnecessary entries and exits with this approach.

The dynamic approach requires some way to identify the task holding the lock, some
way for a task to determine when it is waiting for a lock, and some way to propagate the
attributes of a waiting task without blocking. These first two items may involve non-trivial
overhead, and these three items only guarantee Properties 1 and 2.

Typically, the mutual exclusion region guarded by a spin-lock is short, and thus the
presence or absence of Properties 2 and 3 have minimal effect. In this case, the a priori ap-
proach is the most cost-effective. If this is not the case, busy-waiting is probably not efficient
anyway and other synchronization methods, such as semaphores, should be considered.

In the case of spin-locks (and a few other synchronization problems - see Section 8.3

116 CHAPTER 7. SIDE-EFFECTS

I initialize lock
(define a-lock (cons nil nil))

;: evaluate thunk while holding a-lock
(dOeine (with-lock thunk)

(let ((action (delay (begin (thunk) evaluate the thunk when touched
nil)))) return nil to clear lock

(rplaca-eq a-lock action nil) it car of a-lock is nil.
atomically replace it by action
otherwise block on delay in car

(touch action))) start evaluating thunk

Figure 7.2: A simple spin-lock with a wdelay device"

on Emycin), we can. provide a solution guaranteeing Properties 1 and 2 (and not over-
achieve Property 2) without any new constructs. Figure 7.2 shows such a solution. Each
task entering with-lock competes to indivisibly test the car of the lock cell for nil and if
so, replace it by a delay to evaluate thunk. The winning task touches the delay to force
evaluation o' thunk. Losing ttsks block on the delay in the car of the lock cell. (rplaca-eq
touches its arguments.) When thunk is evaluated, the delay is determined to nil, thus
clearing the lock cell, and any tasks blocked on the delay resume execution of rplaca-eq
and compete again for the lock.

Since all the tasks waiting for the lock touch the task responsible for releasing the
lock, this task has at least the priority of the maximum priority waiter, thus guaranteeing
Property 2 and hence Property 1.

This solution converts the spin-lock problem into the framework of our touching model.
In so doing, we have changed the semantics of this solution slightly from a true spin-lock.
Tasks failing to get the lock block rather than spin. If thunk takes more than a short
time to evaluate this may be an improvement over spinning. However, if thunk does take
only a short time, the queueing and restarting associated with blocking may add significant
overhead. Ideally, we would like to propagate attributes to the task evaluating thunk
without blocking.

This solution lacks Property 3, but this should not be an important problem. If it
were, the circumstances are probably such that semaphores would be a better choice than
spin-locks.

7.3.2 Placeholders

Placeholders are a very useful synchronization mechanism. We categorize their use by the
number of potential determiners for a given placeholder.

7.3. EXAAPLES 117

rnitialize:
(define first (make-luture)) * make a placeholder

Master task: Slave tasks:

(master-before)
(determine-future first nil) ; continue slaves (touch first) ; await synch condition

(master-after) ...

Figure 7.3: A placeholder example with one determiner

One determiner

Figure 7.3 shows a typical application of a placeholder with one determiner.

The two problems here are the master task may be stayed before determining the place-
holder and the master task may run slowly, perhaps being subject to unnecessary preemp-
Lion, while higher priority tasks are blocked on the placeholder. In short, the problem is
that Property 2 is not guaranteed. Property 3 is irrelevant here.

We could solve this problem by making the master task non-preemptable until it deter-
mines the placeholder, but this is too strong a solution. Instead, we would like the tasks
blocked on the placeholder to sponsor the task that will determine the placeholder. In some
cases, such as is suggested in Figure 7.3, the determiner may be known a priori. In such
cases we might be able to use a variation of the trick in the previous section, as illustrated
in Figure 7.4.

If the determiner is not known a priori, we have the problem discussed in the next
section.

Multiple Potential Determiners

A prime example of this use of placeholders is multiple-approach speculative compu.ation.
Figure 7.5 shows such an example where we are interested only in the first solution to a set

Master task: Slave tasks:

(setl first (future ...
(begin (master-before) nil))) (touch first)

(touch first)

(master-after)

Figure 7.4: Placeholder example with "delay device" variation

118 CIIAPTER 7. SIDE.EFFECTS

(define first (cons 0 nil)) ; initialize lock

(define first-solution (make-future)) ; create synchronization placeholder

;; attempt to solve the given problem
(define (solve problem)

(let ((a-solution (work-on-problem problem)))
(it (solution? a-solution) ; was a solution foundT

(it (rplaca-eq first 1 0) ; if so. test lock to se
it first solution

;; it first, determine placeholder to solution
(determine-future first-solution a-solution)))))

;; attempt to solve all problems simultaneously
(define (find-first-solution problems)

(mapcar (lambda (prob) (future (solve prob))) problems) ; fork solvers
first-solution) ; return first solution

Figure 7.5: A placeholder example with multiple potential determiners

of problems. For simplicity, we assume that a solution will be found for at least one of the
pLoblems.

As before, a task may be stayed or preempted before determining the placeholder. The
problem here is that we do not know which task will determine the placeholder. Thus we
must ensure that none of the potential determiners is stayed or preempted. One solution is
to make all the potential determiners non-preemptable until the placeholder is determined.
Not only is this solution too strong, as before, but it also is complicated by the need to
re-enable preemption in all the 'failed" determiners. A better solution is to sponsor all the
potential determiners of the placeholder until the placeholder is determined. In fact, noting
that Figure 7.5 is really por, we might like a controller sponsor to distribute sponsorship
to the potential determiners. (This is precisely the approach we take in Section 8.1).

7.3.3 Semaphores

Semaphores may be used in many different ways and as the basis for other synchronization
mechanisms like monitors [Hoare) and (conditional) critical regions [Brinch]. (Thus for the-
oretical reasons we need examine only semaphores, although there may be efficiency reasons
to favor these other mechanisms. We leave the study of these other synchronization mech-
anisms for future work.) We present a few examples of various ways in which semaphores
can be used and the problems encountered in these cases.

7.3. EXAMPLES 119

Simple Mutunl Exclusion - serializers

Semaphore serializers have the following simple format:

(wait-sem sea&)
some action
(si nal-sma, sea)

Some action is guarded for mutual exclusion by a single binary semaphore, sema, which
is initially free. (As mentioned in Section 1.4, wait-sema and signal-sea are our names
for Dijkstra's P and V operations respectively.)

One way to meet Properties I and 2 for serializers is to make tasks non-preemptable while
in the mutual exclusion region. However, given the overhead already involved in blocking
on a semaphore, the benefits of the dynamic approach based on our touching model come
for little additional cost. Thus we consider only this approach in this subsection.

For serializers it is fairly clear what is required to meet Properties I through 3. We
would like to:

1. record the task that is in the serializer mutual exclusion region,

2. sponsor the task in the mutual exclusion region with the priority of the maximum-
priority waiter, and

3. admit waiting tasks to the mutual exclusion region in priority order. We assume that
ties in priority ordering are broken in first-come-first-served (FCFS) order.

In this situation we could add the necessary mechanism to our model so that these
actions will occur implicitly, just like touch sponsorship and priority propagation occurs
implicitly when a task blocks on a future. Unfortunately, the following examples indicate
that such an implicit mechanism will not suffice in general.

Example: Readers and writers problem

In this problem, which is a variation of the simple mutual exclusion problem, there are
two types of tasks accessing a shared object. The first type (the "readers") may access the
object concurrently so long as all tasks of the second type are excluded. The second type
(the "writers") require exclusive access to the shared object.

Figure 7.6 shows a solution to a variant of the reai,"rs and writers problem in which a
writ,:r must wait until there are no pending readers (thus writers may starve).1 readcount

'We assume that waiters for a semaphore are granted the semaphore in first-come-first-served (FCFS)
order, thus readers do not starve.

120 CHAPTER 7. SIDFE-FFECTS

Reader
(wait-soma mutex) ; (1)
(incri. ,eadcount) ; (2)
(if (- r.adcount 1)

(wait-semi wrt)) ; (3) first reader must wait for writer tc, fitish
(signal-sema mutex) ; (4)
read operation
(wait-sem mutex) ; (5)
(decri readcount) ; (6)
(if (- readcount 0)

(signal-sem wrt)) ; (7) let a writer proceed
(signal-sema mutex) ; (8)

Writer
(wait-sema wrt) ; (9)
write operation
(signal-sema wrt) ; (10)

(incri x) and (decri x) are macros which expand to (,,tI x (+ x 1)) and (met I x (- x 1)) respec-
tively.

Figure 7.6: A solution to the readers and writers problem

indicates the number of current readers and mutex is a binary semaphore for updating
readcount atomically. wrt is a binary semaphore for the mutual exclusion of readers and
writers.

The solution in Figure 7.6 contains three serializers: lines 1 through 4 and lines 5 through
8 for updating readcount and lines 9 through 10 for writing. Thus this solution suffers from
the same two problems as simple scrializers:

1. A low priority task (reader/writer) in a mutual exclusion region may block the entry of
higher priority tasks waiting for access to that region. Deadlock (to readers/writers)
may result if the low priority task cannot make progress, such as if it is stayed.

2. Access to the mutual exclusion -egions - for readcount update and writing, via
(wait-sea mutex) and (wait-sema wrt) respectively - is not necessarily via pri-
ority order.

The solution in Figure 7.6 contains another critical region: from the (wait-sema wrt) in
line 3 through (signal-sema wrt) in line 7. This critical region is fundamentally different
from the critical regions in the simple serializers so far: there may be more than one task
in the critical region simultaneously. Furthermore, only the first and last tasks to enter and
exit this critical region in a read uepoch" do so via (wait-sema wrt) and (signal-sema
wrt) respectively. No one task necessarily holds the wrt semaphore for the entire duration
of a read epoch.

7.3. EXAMPLES 121

Coupling between the simple serializers and this new critical region introduces a number
of now problems.

First, readers are blocked (on wrt for the first reader and on mutex for the rest) until
the present writer exits the write serializer. If a writer is stayed in the write scrializer, all
readers (and writers) will be deadlocked.

Second, writers are blocked until the last reader in the current read epoch completes
line 7. If any reader is stayed between lines 3 and 7, writers will be deadlocked. Note that
only writers are deadlocked if readers are stayed between lines 4 and 5.

Third, readers are blocked by a reader in either of the two readcount serializers.

Fourth, readers and writers do not enter the critical region in priority order with respect
to each other. We would like a blocked writer of priority p to prevent any new readers of
priority less than p from entering the critical region.

To deal with these first three problems, we would like to extend our solution for the first
two problems. We would like:

1. the readers blocked on mutex to sponsor the reader in the first or second readcount

serializers,

2. the readers blocked on wrt in line 3 to sponsor the writer in the write serializer, and

3. the writers blocked on wrt in line 9 to sponsor

(a) the writer, if one is present, in the write serializer, and

(b) otherwise the readers in the critical region between lines 3 and 7.

3(b) raises the following issue: which readers between lines 4 and 5 do the writers blocked
on wrt sponsor? This sponsorship can affect the order in which these readers gain'access
to the second readcount serializer and thus this order may not correspond to the order
expressed by their "original" priorities. For example, if the tasks blocked on wrt sponsor all
the readers between lines 4 and 5 with the same priority, these readers will gain access to the
second readcount serializer in FCFS order rather by the order of their original priorities.
We will examine this issue later.

Example: Producer-consumer problem

The producer-consumer problem consists of some number of tasks synchronizing the pro-
duction and consumption of values via a finite buffer. A producer task computes a value and
inserts it in the buffer where a consumer task later retrieves it. Figure 7.7 shows the code
for a producer-consumer problem involving a buffer of size N. nutex is a binary semaphore
for atomic insertion and deletion to/from the buffer. empty is a general semaphore, with
initial value N, which counts the number of empty slots in the buffer. Complementing empty
is the general semaphore full. Its initial value is 0 and it counts the number of full slots
in the buffer.

122 CHAPTER 7. SIDE-EFFECTS

Producer Consumer
(wait-sena enpty)-; (I) wait h until- ast (wait-sema full) ; (5) wait until at least

one empty slot one full slot
(wait-sema Mutex) ; (2) indivisibly add an (wait-seoa mutox) ; (6) indivisibly delete an

item item
insert in buffer delete from buffer
(signal-gema mutex) ;(3) (signal-soma mutex) ;(7)
(signal-sema full) ; (4) indicate a full slot (signal-sema empty) ; (8) indicate an empty

slot

Figure 7.7: A solution to a producer-consumer problem

This formulation2 has the familiar two problems associated with a simple serializer like
mutex. It also has the additional problem that a consumer could be deadlocked waiting on
lull if every producer is in one of the following three states:

1. stayed before line 1
We call producers outside lines 1 through 4 external producers.

2. stayed between lines 1 and 4

3. blocked on empty

Likewise, a producer could be deadlocked waiting on empty if every consumer is in one
of the following three states:

1. stayed before line 5
We call producers outside lines 5 through 8 external consumers.

2. stayed between lines 5 and 8

3. blocked on full

These problems are unique among the semaphore examples presented so far. they involve
tasks (the external producers and consumers) outside the semaphore regions. In this respect
the producer-consumer problem is similar to the placeholder example presented in Section
7.3.2.

To solve these new deadlock problems we would like:

1. The producers blocked on full to sponsor

(a) any producers between lines 1 and 4, and

(b) if none, the xternal producers (which includes the tasks blocked on empty).

2Stte'.as ' AbcLn, pro- 2e ,m gart way to achieve producer-consumer '.nchronlzatlin. However,
buffer-baed formulations offer better control over storage use.

7.3. EXAMPLES 123

2. The producers blocked on empty to sponsor

(a) any consumers between lines 5 and 8, and

(b) if none, the external consumers (which includes the tasks blocked on full).

As in the readers/writers problem, there is the question of exactly which external producer
and external consumer we should sponsor.

In addition, we would like tasks blocked on empty and full to enter their respective
critical regions in correspondence with their priority order.

Example: Simulation of monitors

A monitor consists of data, procedures, a body, and a mutual exclusion region. The body
is executed once when the monitor is initialized and thereafter all interaction with the data
is via the procedures defined in the monitor. The body of each such procedure executes
in the mutual exclusion region, thus at moet one procedure invocation may execute at any
time. Since monitors are intended for the coordination of concurrent processes, monitors
provide a way for procedure bodies to perform synchronization via condition variables. If
c is a condition variable, then (cwait c) causes the calling process to block on condition
c, and (csignal c) awakens a process3 (if any) blocked on condition c. (csignal c) has
no effect if there are no processes blocked on c. Note that these synchronization constructs
are not semaphores, but merely block-wakeup constructs (atomicity is already ensured by
the mutual exclusion region). When a process executes (csignal c) there may be a choice
between continuing the signalling process in the mutual exclusion region or stopping it and
awakening a process blocked on condition c to continue in the mutual exclusion region
instead. For reasons stated in [Hoare), it is customary to obey the Immediate Resource
Requirement [Ben-Arij in such instances, which gives priority to resuming processes blocked
on the signalled condition over continuing the signalling process.

We consider here a restricted form of the monitors presented above: each procedure
must have at most one csignal and such a csignal must occur as the last statement of the
procedure. We make this restriction to simplify the example; it is not necessary in practice or
in the simulation of monitors by semaphores. With this restriction, the Immediate Resource
Requirement gives priority to resuming processes blocked on the signalled condition over
admitting new processes to the mutual exclusion region.

To simulate a monitor M obeying the above restrictions, we associate with M a binary
semaphore s, initially free, to serialize access to the mutual exclusion region of M. The
entry point(s) of each monitor procedure begin(s) with (wait-sema a) and the exit point(s)
end(s) with either (signal-sema s) or a csignal (as per the restriction above).

Every condition variable c has an associated integer variable ccount, initially 0, to
count the number of processes waiting for c and a binary semaphore csem, initially locked,

3Monitors customarily utilize FFS ordering for awakening processes.

124 CHAPTER 7. SIDE-EFFECTS

Monitor Simulation
procedure entry (wait-sema s) ; enter mutual exclusion region

procedure exit (aignal-sema u)
(w/o csignal) procedure return

For every condition c:
(cwait c) (incrl ccount) ; (1) increment # processes wziting for condition c

(signal-soma a) ; (2) exit mutual exclusion region (so no deadlock)
(wait-seza cem) ; (3) wait for signalling of condition c
(decri ccount) ; (4) decrement _ procees waiting for condition c

(csignal c) (it (> ccount 0) ; (5) check if any processes blocked on condition c
(signal-sema cuex) ; (6) if so, start one up
(sigual-sema)) ; (7) otherwise exit the mutual exclusion region

procedure return

Figure 7.8: Simulating monitor M with binary semaphores

to actually block the processes.

Figure 7.8 shows how M may be simulated using binary semaphores. Figure 7.9 il-
lustrates a kind of state diagram for M (with only one condition c - the extension for
multiple conditions is straightforward). The circles indicate states and the rectangles indi-
cate semaphores. The arc labels indicate the condition causing the state transition.

There are four problems with the code in Figure 7.8 in a speculative computation envi-
ronment. The first two are the familiar problems with serializers.

First, a low priority task in the mutual exclusion region may block the entry of higher
priority tasks waiting for semaphore z or csen. Deadlock may result if the low priority task
cannot make progress, such as if it is stayed.

Second, access to the mutual exclusion region, via (wait-sems s) or (wait-sems csem),
is not necessarily via priority order.

Third, in more complex uses of semaphores, such as in this example, deadlock may
occur even if a task is stayed in certain regions unguarded by semaphores. In Figure 7.9,
the waiters for condition c (i.e. all the tasks between lines 2 and 3) are unguarded by any
semaphores, yct deadlock will result if all these tasks are stayed. The reason is that tasks
in this "critical region" are included in the monitor state by ccount. When a task executes
(signal-sena csem) in line 6, it in effect "passes" the semaphore a which it currently
possesses to one of the tasks waiting on condition c and hence waiting for re-entry to the
mutual exclusion region. Thus the task that will signal s will not be the same as the one
that waited for it. The fact that ccount was > 0 indicates that there should be tasks
waiting on condition c, but they all might have been stayed before making it to that point.
In any event, if none of the tasks that incremented ccount can ever re-enter the mutual
exclusion region (and release semaphore s or pass it to yet another task), then no task can
ever enter the mutual exclusion region.

7.3. EXAMPLES 125

entry mutual C84111

procedure sinl exclusion sinlcondition

(cwait c)

Figure 7.9: State diagram of monitor M simulation

(One can also view semaphore wrt in Figure 7.6 as being "passed" from reader to reader.
However, this view is less natural for the readers and writers problem.)

The last problem is similar to the fourth problem with the producers/consumers ex-
ample. Certain tasks may be blocked on a condition semaphore waiting for other task(s)
to enter the monitor and signal the condition. For example, we could use a monitor to
perform producer/consumer synchronization. A consumer task could block on a condition
indicating the buffer was empty until some producer task entered the monitor and signalled
a full slot in the buffer.

To deal with these two new problems, we would like to extend our solution for the first
two problems. We would like:

1. The tasks blocked on s to sponsor

(a) the task, if any, in the mutual exclusion region, and

(b) otherwise the waiters for condition c in the "critical region" between lines 2
and 3 where c is the condition signalled by the most recent task to exit the
mutual exclusion region. (If there are tasks blocked on s and there is no task in
the mutual exclusion region, the most recent task to exit the mutual exclusion
region must have done so via csignal.)

2. The tasks blocked on csem (for every condition c) to sponsor

(a) the task, if any, in the mutual exclusion region, and

(b) otherwise the task(s) responsible for eventually signalling csem.

126 CHAPTER 7. SIDE-EFFECTS

7.3.4 Other types of side-effects

Side-effects :an certainly be used in other ways to achieve intertask synchronization and
thus lead to possible problems. The most general way is by busy-waiting on some change in
state effected by another task, such as changing a binding (set i) and mutating a structure
(set-czrl, vector-seti, string-set!, etc.). The issues here are exactly the same as
with locks, the only difference being the non-indivisibility of the state changes. In the
interest of program clarity and understandability, we believe that programmers should be
encouraged to use a small set of powerful primitives. Thus we eschew direct treatment of
general busy-waiting synchronization in favor of locks, which are strictly more powerful.
Our techniques for dealing with the problems of locks should also apply to the problems
with general busy-waiting mechanisms (though additional constructs may be necessary).

A different type of side-effect is input/output (other than by the read-eval-print-loop).
Input, by definition, is always demanded and thus presents no problems in speculative
computation. Output, by contrast, is not always demanded and thus has the same relevance
problem as task synchronizing side-effects: a task could be stayed before printing some
output. There is no direct way to demand output, just like there is no direct way to
demand other types of side-effects. We can either ensure that the task performing the
output is not preempted or we can arrange to sponsor the task(s) responsible for performing
the output, just like we did with side-effects. Thus output really presents the same intertask
synchronization problem as with other side-effects.

7.4 Solu-tions

In this section we consider solutions to the problems exemplified by the synchronization
mechanisms in the previous section. First we briefly discuss non-preemptable regions for
simple mutual exclusion synchronization. Then we discuss at some length a sponsor-based,
dynamic approach in the context of ou touching model for precedence constraint and more
complex mutual exclusion synchronization.

7.4.1 Non-preemptable regions

We obtain non-preemption by promoting a task to mandatory status temporarily. The
primitives promote-task and demote-task cause the executing task task to enter and exit
a non-preemption region respectively. While these primitives suffice for many applications
- such as guaranteeing non-preemptable output, they are insufficient for serializers. For
spin-locks and semaphores, we only want to promote a task once it has entered the critical
region. This requires new constructs. For spin-locks we introduce a pair of new primitives:
rplacx-eq-mand (z = a or d). These primitives are styled after the rplacz-eq primitives of
Multilisp. Like (rplacz-eq a b c), (rplacz-eq-mand a b c) indivisibly tests if the czr
of a is eq to c and if so, replaces the czr of a by b and returns a, and otherwise returns
nil. However, these new primitives also indivisibly promote the current task to mandatory

7.4. SOLUTIONS

; initialize lock
(define a-lock (cons nil nil))

;; evaluate thunk while holding a-lock

(deti;r (with-lock thunk)
(It (trlaca-es-mand a-lock '#t nil)

;1 1 a r (04 a-lock is nil, atomically replace it by '#t
; tnd pro.Atz the task to mand
(begin

(thunk)
(rplaca a-lock nil) ; clear lock
(deote-task))

(i~h.-lock Q=Wu~))

Figure 7.10: Norpreemptable spin-lock

status if the eq tt, .s non-nil. Thus the problem with spin-locks in Section 7.3.1 may now
be solved as shown in Figure 7.10.

Semaph ur.;a - at least semaphores obeying just Properties 1 and 2 - can be built from
rplacz-eq-mand and other primitives.

7.4.2 Sponsors

To solve the relevance problem of side-effect synchronization efficiently - i.e. obeying, but
not over-achieving, Properties 1 and 2 - we need to be able to transmit the demand of a
task awaiting some event to the task(s) responsible for further progress (or lack thereof).

Sometimes this involves demanding a single task, but many times the context does not
uniquely identify a single task - there may be a collection of tasks, any one of which may
be the one that actually does the synchronization. Since we do not know which task in such
instances, we have to conceptually demand all the tasks in the collection.

We use class sponsors to solve the relevance problem. Class sponsors allow us to tem-
porarily sponsor a task or a collection of tasks, thus transmitting demand, without touching
- i.e. blocking on - the tasks. The following sections demonstrate how to solve the rel-
evance problems in the previous synchronization examples with sponsors in the context of
our touching model.

7.4.3 Placeholders

To solve the problems with placeholders, we need the tasks blocked on a placeholder to
sponsor a defined class of potential determiner tasks. This is the reason for the optional

128 CHAPTER 7. SIDEEFFECTS

(define determiners (make-class 'all)) ; or (make-class 'pqueue)

(define first (cons 0 nil)) ; initialize lock

;; create synchronization placeholder
(define first-solution (make-future determiners)) ; 2

;; attempt to solve the given problem

(deline (solve problem)
(let ((a-solution (work-on-problem problem)))

(if (solution? a-solution) ; was a solution found?
(if (rplaca-eq-mand first 1 0) 0

;; il first, determine placeholder to solution
(begin

(determine-future first-solution a-solution)
(demote-task)))))) 4

;; attempt to solve all problems simultaneously
(define (find-first-solution problems)

(mapcar (lambda (prob)
(add-to-class (future (solve prob)) determiners)) ; 6
problems) ; fork solvers

first-solution) ; return first solution

Figure 7.11: Solution to multiple potential determiners problem

class argument to make-future in Section 6.2. Figure 7.11 shows how to solve the multiple
potential determiners problem in Section 7.3.2 with classes.

The line numbers indicate lines with changes from Figure 7.5. Line 1 creates a jass for
all the potential determiners. Line 2 creates a placeholder which sponsors these potential
determiners. Thus any task blocked on this placeholder sponsors the potential determiners
and thereby propagates the demand for the placeholder result to the potential determin-
ers. Line 5 creates and adds each problem solver to the potential determiners class. The
atomically entered non-preemptable region defined by lines 3 and 4 prevents the "winning"
task from being stayed in the exclusive region before it determines the placeholder. This
non-preemptable region is not necessary if the class sponsors every member of the potential
determiners class (e.g. if the class type is all). In this case, the winning task - whichever
one it is - will always be sponsored by the tasks waiting on the placeholder and thus can
not be stayed. However, this non-preemptable region is necessary if the class sponsors only
some of the potential determiners (such as e.g. with class type pqueue). In this case, the
winning task may be one of the tasks not sponsored by the class and would cause deadlock

7.4. SOLUTIONS 129

if stayed in the exclusive region.

The single determiner problem in Figure 7.3 is trivial to solve in a likewise manner.

7.4.4 Semaphores

To solve the problems with semaphores, we need to be able to define classes of potential
signallers, like the potential determiners with placeholders, and sponsor these classes by the
tasks waiting for semaphores. Unlike with placeholders though, we also need some way for
a task to transit through different classes as it enters and exits critical regions. We also
want to udmit waiting tasks to critical regions in priority order of the tasks. We introduce
the following constructs. (Some of these are modifications of the constructs in Section 1.4.)

(make-sema &optional class (count 1)) creates and returns a semaphore object which consists
of a count of the tasks which may still enter the critical region, a priority queue for tasks
waiting to enter the critical region, and a class for waiting tasks to sponsor, which we call
the sema clas. The count field is initialized to count, or 1 if count is omitted. If count is
initialized to 1, the semaphore is a binary semaphore; otherwise it is a general semaphore.
The maximum priority task in the priority queue sponsors the sema class. The sema class
is initialized to class (or nil if class is omitted) and is accessible via the construct

(get-sema-class semrna) and may be set via

(set-sema-class sema class).

Thus, the class that waiting tasks sponsor may change dynamically. We show the
advantages of this feature later. A waiting task may sponsor several classes by defining the
sema class to be a class of classes.

(wait-sema sema, &optional cr.thunk) is a standard semaphore wait operation augmented
with a "critical region thunk". If present, the optional argument cr-thunk should be a
procedure of zero arguments (otherwise an error will occur). The task executing wait-sema
tests the count associated with sema and, if nonzero, decrements the count and promotes
itself to mandatory status. Otherwise, the task enqueues itself in the priority queue of
waiters for serna and suspends. The test and these subsequent actions (either decrement
and promote or enqueue) occur indivisibly. If the count was nonzero, the task applies cr-
thunk (if present), demotes itself to its proper status, and finally returns from wait-sema.
Thus cr-thunk executes as a mandatory task. This enables cr-thunk to perform critical
operations, such as adding the task to the sema class of 8ema, without danger of being
stayed.

(signal-sema aema &optional cr-thunk) is a standard semaphore signal operation aug-
mented with a "critical region thunk" like in wait-sema. If cr-thunk is present, the task
executing signal-sema promotes itself to mandatory status, applies the zero argument pro-
cedure cr.thunk, signals the semaphore sema (as described shortly), and then demotes itself.
Thus cr-thunk can perform critical operations without danger of being stayed ok preempted
until the semaphore is released. With the optional arument cr-thunk, signal-sema is

130 CHAPTER 7. SIDE-EFFECTS

syntactic sugar for

(promote-task)
(cr.thunk)
(signal-sena seam)
(demote-task)

If cr.Munk is omitted, the task executing signal-sema signals sema as follows. If the count
associated with ema is zero, the task dequeues the maximum priority (suspended) task
from the priority queue of waiters for sema, promotes this task to mandatory status, and
resumes it. Otherwise, the executing task increments count. The test and subsequent action
in either case occur indivisibly.

Finally, we introduce two convenient macros for entering and exiting classes.

(enter-class class) adds the evaluating task to the given class.

(exit-class class) removes the evaluating task from the given class.

These two macros expand to (add-to-clas (my-future) class) and
(remove-from-class (my-future) class) respectively. (my-future) returns the future ob-
ject of the executing task.

The basic idea with these constructs is two-fold. The first part is to always ensure that
any task in a *critical region" is a member of some class. The second part is t ensure
that the tasks blocked on a semaphore sponsor the appropriate class of tasks responsible
for releasing the semaphore.

The first part involves, in general, defining a set of classes for tasks and the transitions
between these classes. That i., task's trajectory through a semaphore system (such is in
the examples given in Section 7.3.3) transits between various classes, The classes can be
defined using the make-class construct and the class transitions can b, defined using the
add-to-class/enter-class, and remove-from-class/exit-class co'istructs.

The second part involves defining at each point in time the appropriate class that the
tasks blocked on a semaphore should sponsor. This "semaphore sponsor class" (a.k.a. sema
class) is defined initially by the argument to the mako-sema construct and thereafter may
be changed using the set-sema-class construct. Thus, in a sense, a semaphore may also
transit between classes. A more correct view is that a sponsor 'indirection cell" transits
between classes (with set-sena-class defining the transitions).

These two principles allow us to achieve Property 2 and hence also Property 1, as we
will demonstrate shortly for our examples of Section 7.3.

A second basic idea with these new constructs is the priority access order to critical
regions, implemented by the priority queue mechanism for tasks blocked on a semaphore.
This priority queue mechanism allows us to finally achieve Property 3.

We now demonstrate solutions, using our new constructs, to the problems with the

7.4. SOLUTIONS 131

examples in Section 7.3. These examples should help the reader understand the principles
described above.

Simrple Mutual Excluslon - serlalizers

The problems with simple semaphore serializers are solved straightforwardly:

(wait-sema sem (lambda) (enter-class cr-class)))
some action
(signal-soma sema)
(exit-class cr-class)

where cr-claas is initialized by (make-class 'all) and sem& is initialized by
(zake-sema cr-class n) (n= I for a binary semaphore).

Each task enters and exits cr-class as it enters and exits the mutual exclusion region
respectively. The maximum priority task waiting to enter the mutual exclusion region
sponsors the task(s) in the mutual exclusion region via its membership in cr-class. This
guarantees Property I and 2. wait-sema maintains a priority queue of tasks waiting to
enter the mutual exclusion region and admits them in priority order, thus guaranteeing
Property 3.

Obviously, we can easily define an interface that hides the notion of classes from the
user in this case. The following is one possibility.

(define (make-serializer)
(let* ((mutex-class (make-class 'all))

(sema (make-sema mutex-class)))
(lambda (thunk)
(wait-sema sema (lambda () (enter-cluss mutex-class)))
(thunk)
(signal-sema sema)
(exit-class mutex-class))))

This makes and returns a userializer" procedure which takes an argument thunk and eval-
uates the thunk in a mutual exclusion region as shown below.

(define serialize (make-serializer))

(serialize (lambda) ; evaluate serialized-code in
serialized-code)) ; mutual exclusion region

132 CHAPTER 7. SIDE-EFFECTS

The readers and writers problem

This problem may now be solved as shown in Figure 7.12. The main idea is to have two
classes: one for the readers or writer in the read/write critical rdigion (i.e. with access to
the shared object) - we call this the accessor-class - and r.ie for the mutual exchlsion
region of the readcount serializer - we call this the autex-class, Any .,sks blocked
awaiting access to the critical region sponsor the readers or writer in the critical region. Any
readers blocked awaiting entry to the readcount mutual exclusion region sponsor the task in
that region. These sponsorships guarantee Properties I and 2. The semaphores admit tasks
to the critical and mutual exclusion regions in priority order and thus guarantee Property
3. This solution does not, however, guarantee this priority access order to the critical region
across readers and writers.

We now give a line by line description of Figure 7.12. Readers blocked on the mutex
semaphore region in line I sponsor mutex-class. t As a reader enters this autex mutual
exclusion region in line 1, line 2 adds the reader to autex-class. If this reader is the first in
a read epoch, it tests the wrt semaphore in line 4 for entry to the read/write critical region.
If successful, line 5 adds the reader to accessor-class. If unsuccessful, the reader blocks
on the wrt semaphore and sponsors accessor-class via the sema class or wrt. In this
case, note that any readers blocked on autex (in lines I or 9) sponsor this reader, which
in turn sponsors accessor-class. This transitivity ensures that the maximum-priority
reader always sponsors accessor-class. If the reader is not the first in a read epoch, line
6 simply adi it to accessor-class. Finally, the reader exits the autex mutual exclusion
region and ,utex-class in lines 7 and 8 respectively. The reader, now in the read/write
critical region, remains in accessor-class.

When we sponsor tasks in accessor-class, we are careful to only sponsor the maximum-
priority tnsk in this class (by virtue of the pqueue class type). This ensures that the
relative order of readers established by their priorities in line I is not subverted when
accessor-class is sponsored. (Note that there is never more than one writer in
accessor-class, except possibly momentarily after a writer exits the critical region in line
18 but before it exits accessor-class in line 19.) For example, if accessor-class had
clas. type all, all the readers between lines 8 and 9 could have the same priority (from a
high priority writer blocked on wrt) and this readers would gain access to the second mutex
mutual exclusion region in FCFS order rather than in the order of their original priorities.

The exit of readers from the read/write critical region is straightforward. Readers
blocked on mutex in line 9 again sponsor mutex-class. Readers finally exit accessor-class
in line 14. This exit must follow line 12 to ensure that a waiting writer sponsors the last
reader in a read epoch until the reader releases wrt.

Writers blocked on wrt in line 16 sponsor accessor-class. Lines 18 and 19 are straight-
forward.

'When we say that the waiting tasks blocked on a semaphore sponsor a class, we mean that the maximum-
priority waiter task sponsors the class.

7.4. SOLUTIONS 133

Initialization
(define accessor-class (make-class lpqueue))
(define urt (make-sems. accessor-class))
(define mutex-class (make-class 'all))
(define mutex (make-soma miutx-class))
(define readcount 0)

Reader
(Wait-sema mutex ; (1)

(lambda 0) (enter-class mutex-class))) ; (2)
(incri readcount) ; (3)
(if (- readcount 1) ; (4)

(wait-sema. wrt
(lambda 0)

(enter-class accessor-class))) ; (5)
(enter-class accessor-claus)) ; (0)

(signal-soma mutex) ; (7)
(exit-class mutex-class);()
read operation
(wait-sema mutex;(9

(lambda 0) (enter-class mutex-class))) ; (10)
(decri readcount) ;(1
(if (- readcount 0)

(signal-sema irrt)) ; (12)
(signal-sema mutex) ; (13)
(exit-class accessor-claus) ; (14)
(exit-class mutex-claus) ;(5

Writer
(wait-sema wrt ;(6

(lambda (
(enter-class accessor-class))) ; (17)

write operation
(sigual-sena wrt) ; (18)
(exit-class accessor-class) ; (19)

Figure 7.12: A better solution to the readers and writers problem

134 CHAPTER 7. SIDE-EFFEGTS

(define (ake-rw-uerializer)
(let* ((accessor-class (make-clas 'pqueue))

(wrt (make-sena accessor-c.ass))
(serialize (ake-erializer))
(readcount 0))

(cons
(lambda (read-thunk)

(serialize
(lambda 0

(incri readcount)
(if (- readcount 1)

(wait-mama wrt
(lambdi.C

(enter-class acceusor-class)))
(enter-class accessor-class))))

(read-thunk)
(serialize

(lambda O
(decrI raadcount)
(if (- readcount 0)

(signal-Ses wrt))
(exit-class accessor-claan))))

(lambda (wrt-thunk)
(wait-sma wrt

(lambda
(enter-class accessor-class)))

(wrt-thunk)
(signal-eoa wrt)
(exit-class acceaaor-class)))))

Figure 7.13: A user interface for the readers and writers problem

Note the two parts of this solution as described earlier. We defined a set of classes
- accessor-class and mutex-class - so the,t each task in a critical/exclusion region
is in one or more classes and we defined transitions between these classes to match the
trajectory of tasks through the semaphore system. Then we ensured that the tasks blocked
on a semaphore always sponsor the class of task:s responsible for releasing the semaphore.

The use of mute:c and mutex-class in Figure 7.12 mirrors in every way the previous
serializer example, and thus we could use the nake-serializer abstraction here.

As before, we can easily define an interface that hides the notion of classes from the
user. Figure 7.13 shows one possibility which incorporates our earlier make-serializer
abstraction. make-rw-serializer makes and returns a pair consisting of a reader serializer
and a writer serializer. Each of these serializers takes an argument thunk to evaluate in the
read/write critiral region. The following example illustrates their use.

7.4. SOLUTIONS 135

Initialize:
(define rw-serializer (ake-rw-serializer))
(define reader (car rw-serializer))
(define writer (cdr rw-serializer))

Readers: Writers:

perform a read: ; perform a write:
(reader (lambda () read-operation)) (writer (lambda () write-operation))

The producer-consumer problem

This problem may now be solved as shown in Figure 7.14. This solution consists of four
classes: empty-claas for the producers between (wait-sema empty) and (signal-sema full);
full-class for the consumers between (wait-sema full) and (signal-sema empty);
ext -producer-class for all the potential producers external to the critical regions; and
ext-consumer-class for all the potential consumers external to the critical regions. We
use the make-serializer abstraction defined earlier to ensure proper sponsorship of tasks
in the mutual exclusion region and priority access to this region. Produc.3rs originate in
ext-producer-clasm, transit to empty-class (lines 2 and 3), pass through the serializer
while still in empty-class, and exit empty-class (line 12). Similarly, consumers originate
in ext-consumer-class, transit to full-class (lines 14 and 15), pass through the serial-
izer while still in full-class, and exit full-class (line 24). If producers and/or consumers
continually cycle producing and consuming, respectively, (enter-class ext-producer-class)
and (enter-class ext-consumer-class) should follow lines 12 and 24 respectively.

The idea, sponsorship-wise, is as suggested in Section 7.3.3. Producers blocked on ezpty
sponsor full-class if there are one or more consumers in that class and ext-consumer-class
otherwise. We implement this by updating the sema class of empty in lines 17 and 23.
The counter num-f ull-cl tracks the number of consumers in full-class. The binary
semaphore full-cl-sema ensures atomic updating and testing of this counter. Note that
we do not need classes for this semaphore since it always executes as a mandatory task in
the cr-thunk region. Likewise, consumers blocked on full sponsor empty-class if there are
one or more producers in that class and ext-producer-class otherwise. We implement
this by updating the sema class of full in lines 5 and 11 under the control of the counter
enp-num-cl, which is guarded by the binary semaphore emp-cl-sema. The ability to mod-
ify the sema class of a semaphore is essential here since the class responsible for releasing
a semaphore may change with time. In essence, the sema class is an indirection cell for
sponsorship.

mpty-class and full-class have class type pqueue so that we do not disrupt the
priority ordering of tasks in these classes. To make progress we only need to sponsor a task
in each of these classes, not all the tasks. ext-producer-class and ext-consumer-class
have class type all because we neither know nor can predict (in general) which task in these

136 CHAPTER 7. SIDE-EFFECTS

respective classes will produce or consume. As with the multiple potential determiners
problem in Section 7.3.2, we could also use a controller sponsor with some other other
sponsorship policy. With class type all for these classes, the order in which producers, for
instance, blocked on empty enter empty-class may not be in accordance with their original
priorities. In this case, this deficiency is not very important since there can be multiple
tasks in the empty-class anyway.

The above solution, with its classes and two additional semaphores (we could also use
locks), is rather expensive. A tempting cheaper solution is to promote producer and con-
sumer tasks to mandatory status for the duration of the general semaphore critical regions.
Iowever, this cheaper solution is deficient: deadlock can occur if all the external producers
(or external consumers) are stayed. Thus we need the external producer and consumer
classes and some way to sponsor them, and thus we also need the counter variables and
their guards. (However, we could use something like a fetch-and-add primitive to test and
update the counter variables, thereby avoiding semaphores.) Finally, if tasks sponsoring
the external classes have mandatory status, all the tasks in these external classes will be
sponsored, unnecessarily, at the maximum priority.

The simulation of monitors

This problem may now be solved as shown in Figure 7.15. This solution has a class
monitor-claus for the task in the monitor mutual exclusion region and two classes for
every condition c: c-class for all the tasks outside the mutual exclusion region waiting
for condition c and c-producer for all the potential signallers of condition c outside the
mutual exclusion region. The solution closely follows the diagram in Figure 7.9. On entry
to the monitor via a procedure call, a task transits from all possible c-producer classes
(line 2) to monitor-class (line 5). On performing a (cwait c), a task transits from
monitor-class (line 13) to c-class (line 10) to await the appropriate csignal. (The
overlap of monitor-class and c-class in lines 10 and 13 ensures that a task does not
"drop" through a crack between these classes and fail to be sponsored.) When a task per-

Initialization
(def ins ext-producer-class (make-clas "'all)) ; external producer class
(define ext-consumer-class (make-claus 'all)) ; external consumer class
(define empty-clasu (make-class 'pqueue))
(define full-ilas (make-class pqueue))
(define empty (make-mema ext-consumer-class I)) ; buffer size is N
(define full (make-sema ext-producer-claus 0))
(define serialize (make-erializer))
(define num-emp-cl 0) ; # in empty class
(define emp-cl-sema (make-sema)) ; semaphore for num-emp-cl
(define num-full-cl 0) ; # in full class
(define full-cl-sema (make-seas)) ; semaphore for num-full-cl

Figure 7.14: A better solution to the producer-consumer problem (continues on next page)

7.4. SOLUTIONS 137

All potential producers
(enter-class ext-producer-class) ; all potential producers

All potential consumers
(enter-clas ext-consumr-class) ; all potential consumers

Producer
(wait-sema empty ; (1) wait for an empty slot

(lambda0
(exit-class ext-producer-class) ; (2)
(enter-class empty-class) ; (3)
(Wait-sema amp-cl-sena)
(if (- nun-emp-cl 0) ; (4) empty-class was empty

(set-sema-class full empty-class)) ; (5)
(incrl num-amp-cl) ; (0)
(signal-soma emp-cl-sema)))

(serialize (lambda 0 add to buffer)) ; (7) indivisibly add an item
(Fignal-sema

full ; (8) indicate a full slot
(lambda)

(wait-sema emp-cl-sema)
(decri num-emp-cl) ; (0)
(if (- num-amp-cl 0) ; (10) empty-class now empty

(set-sma-class full ext-producer-class)) ;(11)
(signal-soma emp-cl-sema)))

(exit-class empty-class) ; (12)

Consumer
(wait-sema full ; (13) wait for a full slot

(lambda 0
(exit-class ext-consumer-class) ; (14)
(enter-class full-class) ; (15)
(wait-sema full-cl-sema)
(if (- num-full-cl 0) ; (16) full-class was empty

(set-sema-class empty full-class)) ;(17)
(incri nu-full-cl) ; (18)
(signal-sema full-cl-sema)))

(serialize (lambda 0 delete from buffer)) ; (19) indivisibly delete an item
(signal-sema

empty ; (20) indicate an empty slot,
(lambda)

(wait-sema full-cl-sema)
(decri sum-full-cl) ; (21)
(if (- sum-full-cl 0) ; (22) full-class now empty

(uet-sema-class empty ext-consumer-class)) ;(23)
(signal-sema-class full-cl-sema)))

(exit-class full-class) ; (24)

Figure 7.14 continued

138 CHAPTER 7. SIDE-EFFECTS

forms a caignal, it exits monitor-class (line 24) after first allhwing a task waiting for this
signal, if any, to enter the mutual exclusion region (lines 21 and 14) and monitor-class (line
18). Finally, on exit from the monitor via procedure return, a task exits the monitor-class
(line 8).

Sponsorship works as described in Section 7.3.3. Tasks blocked on a sponsor monitor-class
if it contains a task and the most recently signaled c-clans otherwise. We implement this
by updating the sema class ind-rection cell for a in lines 3 and 16 when a task enters
monitor-class, in line 11 when a task transits from monitor-class to c-class (for aspe-
cific condition c), and in line 22 when a task exits xonitor-class (for a specific condition
c). Tasks blocked on csem sponsor monitor-class if it contains a task and c-producer
otherwise (to get a task to do (csignal c)). We implement this by updating the sema
class for csem in (1) line 4 (for every condition c) when a task enters monitor-class, (2)
line 11 when a task exits monitor-class, (3) line 17 when a task enters Monitor-class
due to signalling condition c, and (4) line 6 for every condition c with non-empty c-clans
when a task exits monitor-class. It is not necessary to update the sema class for cues
in the cr-thunk of line 22 since the signalling of csem in line 21 will awaken another task
which will immediately update the sema class in line 17. Note that lines 2, 4, and 6 are
duplicated appropriately for each condition c. Thus this solution is awkward for a large
number of conditiono c.

Finally, c-class and c-producer (for every condition c) should have class type pqueue
so that we do not disrupt the priority ordering of tasks in these classes. The class type of
monitor-class is unimportant since it contains at most one task.

Semaphore Wrap-up

These last three examples clearly demonstrate the need for semaphore operations like the
version of wait-sema and signal-seaa and like set-sema-class that we suggested. (We
have not implemented these operations.) We need the flexibility to have tasks transit
between classes and we need the ability to modify the class a semaphore's waiters sponsor
since the class responsible for releasing the semaphore may change with time. This last
point is illustrated dramatically by the monitor example wherein one such class is outside
any region guarded by semaphores.

The solutions we presented with these operations have two drawbacks. First, these
solutions are complicated and expensive. The need for proper class membership and spon-
sor distribution adds much overhead. Furthermore, many unnecessary priority changes
can result from overlapping classes, leading to inefficiency. Second. these solutions lack
modularity. They cannot be nested. Class membership of any descendants must be han-
dled explicitly. Nevertheless, our solutions illustrate the expressive power of our sponsor
approach.

7.4. SOLUTIONS 139

Monitor Simulation
procedure entry (wait-sema a ; (I)

(lambda) 0
(exit-class c-producer) ; (2)
(set-sema-class a monitor-class) ; (3)
(set-sema-class cuen monitor-class) ; (4)
(enter-class monitor-class))) ;_(5)

procedure exit (if (> ccount 0) (set-sema-class cuem c-producer)) ; (6)
(signal-sma a) ;(7)
(exit-class monitor-class) ; (8)
procedure return

For every condition c:
(cwait c) (incri ccount) ;(9)

(enter-claos c-class) ;(10)
(set-sena-class czen c-producer) ; (11)
(signal-semn s) ; (12)
(exit-class monitor-class) ; (13)
(wait-sea csem ; (14)

(lambda) 0 ;(15)
(set-sema-class s monitor-class) ; (16)
(set-sema-class cuem monitor-class) ; (17)
(enter-class monitor-class))) ; (18)

(exit-class c-class) ; (19)
(decri ccount) ; (20)

(caignal c) (if (> ccount 0)
(signal-sema coem ; (21)

(lambda 0
(Set-sema-class s c-class))) ;(22)

(signal-sena s)) ; (23)
(exit-clans monitor-class) ; (24)
procedure return

Figure 7.15: Better solution for simulating a monitor with binary semaphores

140 CHAPTER 7. SIDE.EFFECTS

7.5 Summary

Side-efrects provide a means for intertask synchronization. With speculative computation
this means that tasks may be relevant for the side-effects that they may perform. The prob-
lem is to ensure this relevance (Property 1) and, more generally, ensure demand transitivity
(Property 2). We also desire priority access to critical regions (Property 3).

We presented solutions to these problems for three common synchronization mechanisms
with side-effects: spin-locks, placeholders, and semaphores. For concreteness we presented
these solutions in the context of our touching model. One can easily generalize these
solutions to the general sponsor model.

These solutions yield a spectrum of synchronization techniques. The appropriate syn-
chronization technique depends on the complexity of the required synchronization, the cost
of the synchronization mechanism, the duration a task spends in critical regions, and the
degree with which we desire to meet Properties 2 and 3. For very cheap synchronization, we
can use simple spin-locks and non-preemptable regions. In doing so, we over-achieve Prop-
erty 2 and abandon Property 3. For intermediate cost, we can use the delay device which
has the overhead of blocking to satisfy Property 2 but no priority queue to satisfy Property
3. The delay device is, of course, limited in its applicability. To meet both Property 2 and
Property 3 we need both blocking and priority queues, which are expensive.

Chapter 8

Applications

In this chaoter we consider several applications which exploit speculative computation in
various wayr. These applications illustrate the issues with speculative computation, demon-
strate our approach to speculative computation with our touching model, and provide ex-
amples of the language features of our touching model. All the execution times listed in this
chapter were obtained running the specified application with our modified version of the
Multilisp byte-code interpreter (see Chapter 10) on either the Concert Multiprocessor, a 32
processor Motorola 68000 based machine [Hals86aJ, or the Encore Multimax, a 16 processor
National 32332 based machine. Each processing element of Concert is about 0.5 to 1 MIPS
and each proccsing element of the Multimax is about 1.5 to 2 MIPS, or approximately
two to three times as fast as that on Concert (depending on the application). Concert
failed during the final stages of data collection so the Concert data is not as complete as
we desired. (Six measurements are missing in Table 8.12.) Since the Multimax was more
convenient to use than Concert, we used the Multimax whenever the number of processors
was not important to the point we were making. In fact, in the two applications for which
we used the Multimax, we only used 8 of its 16 processors.

8.1 Por and Pand

In this section we consider parallel or and and, which we call por and pand. respectively.
These two nondeterministic operators represent perhaps the most important potential appli-
cation of speculative computation because of the ubiquity of or and and. Their implemen-
tation raises a number of issues central to nondeterministic and multi-approach speculative
computation, both in general and in the touching model.

We gave informal semantics for por and pand in Section 1.2.1. See Appendix B for
precise semantics. For now we assume por and pand to be syntactic constructs, i.e. macros.
Since por is strictly more powerful than pand with our definitions, we concentrate on por
in the following sections.

141

142 CHAPTER 8. APPLICATIONS

8.1.1 Requirements

Our objective is a version of por which returns the result in minimum time. We assume
that - afficient computational resources are available so that we can potentially trade these
resources for reduced average execution time. That is, we assume an environment conducive
to speculative use of resources. Since there may be other activities competing for these re-
sources, a second objective is to avoid wasting resources. In this context, an implementation
of por has five requirements:

I. Initialization - create a task to evaluate each disjunct E,

2. Race officiating - return the first true value

3. Termination detection - return nil if all E evaluate to nil

4. Computation reclamation - abort any remaining (useless) tasks after the first true
value is returned

5. Task scheduling - schedule the allocastion of the available resources to the disjunct
tasks and their descendants to minimize the expected time for per to return a result

This fifth requirement is very general - and difficult. We study this requirement in
Chapter 9. For this chapter we satisfy ourselves with a simpler and more practical version
of this requirement:

5. Evaluate the disjuncts Ei as concurrently as possible, but in the specified order if
processing resources are limited. Unless given explicitly by priorities, the specified
order of evaluation is the left-to-right order of disjuncts in por (i.e. FOFS order with
respect to the indices i).2

Thus, as available resources decrease, por should reduce gracefully to the semantics of
sequential or. This allows users to arrange the nrder of the E for minimal execution time
with limited resources. Of course, we have no way to enforce this order once we spawn
the disjunct tasks since the tasks could block. Even task priorities do not guarantee such
an ordering, since a task could still block; priorities only make the ordering more likely.
Therefore, we will consider requirement 5 as pertaining to the order in which we apawn
disjunct tasks.

8.1.2 Mandatory por

If we ignore requirement 4, we can implement por using conventional mandatory tasks
as shown in Figure 8.1. (Note that this implementation is an extension of the multiple

'This may not always be the optimum policy: creating a task for each disjunct may Increase the execution
time if there are insufficient processors available. We ignore this problem for now.

'The evaluation order of disjuncts with the same explicit priorities Is also left-to-right.

8.1. POR AND PAND 143

potential determiners example of Figure 7.5.) For simplicity we show por implemented as
a functioi,. (We rewrite (por Ex E2 ... E%) to

(por-function (list (laubda () B) (lambda 0 E2) ... (lauba 0)))

by macro-expansion. 3 For simplicity we refer to por-f unction as por. The ambiguity
between por as a macro and a function will be resolved by context.)

Before explaining the implementation in detail we give a quick overview. The implemen-
tation creates a placcholdcr for the rcsul and a task to evaluate each thunk in the argument
list. Each task performs race officiating and termination detection. If the thunk evaluates
to a true value and it is the first thunk to do so, the task determines the result placeholder
to true. 1f th. thunk evaluates to nil and all the other thunks have already done so, the task
determines the result placeholder to nil. We perform this distributed termination detection
by counting the total number of thunks and the number of thunks that have evaluated to
nil so far. For n thunks we have n + 1 tasks: a parent task spawns n child tasks, one for
each thunk, and then awaits the result. This allows the parent to continue as soon as a
result is found, regardless of which task finds it.

Now we explain the implementation in detail. Line I initializes a lock cell. Its car is used
for race officiating synchronization. Initially the car is the symbol *no-result* to signify
that no thunk has yet evaluated to true. The cdr of the lock cell is used for termination
detection. Initially it is a placeholder for the number of thunks. If we knew this number,
as we would with the macro version of por, we would not need this placeholder. We will
know the number of thunks after we create a task for each one. Until then, the placeholder
serves as a convenient synchronization mechanism which allows tasks to proceed until they
actually need the total number of thunks. Line 2 initializes the result placeholder. Line 13
creates a task to spawn the thunk evaluators so that the result may be returned in'line 14
without waiting for any of the spawned tasks.

The procceure spawn-tasks creates a task for each thunk and maintains a count of the
number of thunks. Line 3 determines the thunk number placeholder to the total number
of thunks. Line 6 evaluates a thunk. If the thunk evaluates to true, we perform the race
officiating in line 7. The rplaca-eq in this line indivisibly compares the car of the lock cell
with the symbol *no-result* and if eq, replaces the car with the symbol *result* and
returns true. Otherwise, the rplaca-eq returns nil. That is, we atomically check if this is
the first task to get to this point with a true thunk and update the car of the lock cell if so.
If the rpiaca-eq returns true, indicating the task was indeed first, we determine the result
placeholder to the thunk result in line 8. If on the other hand, the thunk evaluates to nil, we
perform the termination detection on line 10. First, though, we perform the optimization
on line 9: we only proceed to termination detection if no task has yet returned true.

The procedure term-detect performs termination detection. Line 11 attempts to indi-
visibly decrement the thunk count in the cdr of the lock cell. If the count is decremented

3in practice we would implement the macro version directly rather than call a helper function.

144 CHAPTER 8. APPLICATIONS

(define (par thunk-list)
(lot ((ock (cons '*no-result* (make-future))) I 1

(result (make-future))) ;2

(define (spawn-tasks thunk-lst n

(determine-future (cdr lock) n) ;3
(begin

(future (eval-thunk (car thunk-ist))) ;4
(spawn-tasks (cdr thunk-lat) (+ n 1))))) ;5

(define (tval-thunk thunk)
(let ((Y (thunk)))

(if v
(if (rplaca-eq lock '*result* '*no-result*) ;7

(determine-future result Y)) ;8
(if (eq (car lock) '*no-result*) 9

(term-detect (cdr lock))))) ;10

(define (tern-detect 0)
(if (rplacd-eq lock (- n 1) n) ; ii

(if (- n 1)
(determine-future result nil)) ;12

(term-detect (cdr lock)

(dfuture %fzpz-_-taL~ks thunk-list 0)) ; 13
result)) :14

Figure 8.1: par implemented with mandatory tasks

For simplicity, we assume the argument thunk-list is non-null.

8.1. POR AND PAND 145

and the count was one - thus all thunks have evaluated to nil - line 12 determines the
result placeholder to nil. If the count was not decremented, we call term-detect to try
once again.

The futures in Figure 8.1 require an explanation. The diuture (see Section 1.4) in line
13 removes task creation and thunk evaluation from the critical path of returning a result,
thus meeting the overall objective (return the result in the minimum time). It must be
dfuture rather than future to avoid queueing the parent continuation (line 14) until tie
call to spawn-tasks returns if there are insufficient processors available. The future in line
4 creates a task to evaluate each thunk until either exhausting thunk-lat or running out of
processors. In the latter case, the parent continuation (line 5) is queued (see Section 1.4.2 on
scheduling future and df uture) and no more tasks are created until a free processor grabs
this continuation from the queue. This ensures the left-to-right spawn order of disjunct
tasks for requirement 5.

The overhead in this implementation of por is fairly high, but then the requirements on
por are fairly complex. Any significant reduction in overhead (other than optimizing for a
one-elment argument list) requires implementation support from the Lisp system. 4

8.1.3 Speculative por: version 1

In this section we address requirement 4: we consider a version of por which includes
computation reclamation, as well as meeting the other four requirements. Thus this version
employs speculative tasks so they may be stayed. Figure 8.2 shows this version. The line
numbers indicate the lines which differ from the mandatory por version.

make-group in line 3 creates a speculative task, with priority *pri*, to spawn the thunk
evaluators. Line I creates a speculative task to evaluate each thunk with priority .*pri*.
Unless it is desired to evaluate a thunk with a priority other than *pri*, the spec-iuture
in this line could just as well be a future since the children of speculative tasks inherit the
priority of their parent unless otherwise indicated. make-group returns a group object which
uniquely names the tree of speculative tasks consisting of the make-group task, the disjunct
tasks, and all their descendants (unless they are touched from outside par by mandatory
tasks). However, this group object is ignored hfre;5 instead, we call make-group for its
effect.

Line 2 stays the group after we have detected the first true-valued thunk and returned
the result. This stays all the tasks in that group and any descendant groups created as the
result of disjunct evaluation, i.e. stays all the activity that par created (except if that activity
is presently sponsored by some activity outside the par). This is exactly the behavior we
desire from por in most cases.

Sometimes, though, we might like to allow the children of the first true thunk to continue

'Note, for instance, that we do not need future objects in lines 4 and 13, only the ability to create a task.
5We cannot rely on the group object returned here since a group descendant may require the group object

(in line 2) before the make-group continuation receives and binds the group object.

146 CHAPTER 8. APPLICATIONS

(define (por thunk-list)
(let ((lock (cons '*ino-results (make-tuture)))

(result (make-future)))

(define (spawn-tasks thunk-Ist n)
(if (null thunk-lst)

(determine-future (cdr lock) n)
(begin

(spec-future (eval-thunk (car thunk-lit)) *pri*) ; 1
(spawn-tasks (cdr thunk-ist) (+ n 1))))

(define (eval-thunk thunk)
(let ((v (thunk)))

(it V
(if (rplaca-eq lock '*result* '*no-result*)

(begin
(determine-future result v)
(stay-group (group-id (my-group-obj))))) ; 2

(if (eq (car lock) '*no-result*)
(term-detect (cdr lock))))))

(define (term-detect n)
(if (rplacd-eq lock (- n 1) n)

(if C- n 1)
(determine-future result nil))

(term-detect (cdr lock))))

(make-group (spawn-tasks hunk-list 0) 4pri*) ; 3
result))

Figure 8.2: por implemented with speculative tasks; version 1

For simplicity, we assume the argument thunk-list is non-null.

8.1. POR AND PAND 147

after por returns, i.e. we might want to return a partial result as tile value of a thunk. We
can solve the partial result problem in this case by evaluating each thunk within a separate
group and staying all the groups other than the one corresponding to the first true thunk.
This is not a very satisfactory solution, though, for two reasons. First, the maintenance of
the group list can be awkward. Second, we cannot continue just some of the descendants
of the first true thunk and not others. Recall that our touching model currelitly has no
specific mechanism for partial results (see Section 6.3).

The scheduling of tasks works as we desire provided the task invoking por has priority
great.!r than or equal to *pri*. In this case the task created by make-group in line 3
defers to the parent task if there are not enough processors since this task's priority is not
greater than the par, "s priority. The speculative tasks created by spawn-tasks each
have the same pr, .- , -,pri* and thus they are processed in FIFO order behind the parent
and make-group tasks if there are insufficient processors. (As described in Section 10.2
speculative tasks with the same priority are queued in FIFO order.)

This version of por has two major problems:

1. Deadlock

If the por is stayed - as a result of being embedded in i% larger speculative compu-
tation which is stayed - and then restarted when another task touches it, the thunk
evaluations will not be restarted, leading to deadlock. The result placeholder breaks
the sponsor chain; it fails to pass the touch sponsorship on to the thunk evaluator
tasks.

2. What should the task priorities be?

Fixing all the thunk evaluator priorities at *pri* ignores the relative promise of the
thunks (to return a true value) and the relative promise of the por with respect to other
speculative activities. Consequently, the thunk tasks could run at a priority less than
the maximum priority task touching the por, which could subvert the desired ordering
and lead to poor performance: tasks of priority less than the maximum priority por
toucher could continually preempt the thunk tasks. The deadlock problem mentinned
above is really the extreme of this problem. Another problem is that the task invoking
por could have a priority less than *pri*. In this case, the invoking task could
be blocked by the make-group task if there are insufficient processors available. To
ensure that the make-group task is not blocked by a thunk task if there are insufficient
processors available, the thunk tasks must be spawned with a priority less than or
equal to the priority of the make-group task. (This ensures the proper spawn order
of the thunk tasks if there are insufficient processors.)

8.1.4 Issues with por in a speculative enviroment

Generalizing from the previous section, there are the following issues involved with por in
a speculative environment:

148 CHAPTER 8. APPLICATIONS

1. Scheduling of disjunct tasks

Task scheduling divides into two components:

(a) pre-demand scheduling - How should the disjunct tasks be scheduled before per
is demanded by a touch?
This amounts to the initial priority to give the disjunct tasks and how these
priorities should be managed in the face of changes within the por, e.g. children
of disjunct tasks created and terminated, and outrWdo the par. This is the eager
component of por scheduling.

(b) post-demand scheduling - How should the disjunct tasks be scheduled after por
is demanded by a touch?
How should the touch sponsorship be distributed? To ensure demand transitiv-
ity, at leat one of the disjunct tasks must have the priority of the maximum
priority waiter. The priority of disjuncts must be dynamic to ensure such de-
mand transitivity in the face of priority changes in par touchers. This is the
demand-driven component of par scheduling.

In a more general view, these two components are really the same: how should the
par sponsorship be distributed across the disjunct tasks'! If we had full controller
sponsors we could address this question in this more general manner, but we do not,
so we address these components separately.

2. Modularity

We need modularity to maintain the desired relative priorities - both the eager and
demand-driven components - in the face of changes in whatever computation may
contain the par. Such modularity would prevent deadlock if the par was stayed and
restarted when touched.

However, we do not have triodularity in our touching model, so to prevent deadlock
we must at least have group coherency: when par is restarted after being stayed, all
the relevant tasks comprising par must be restarted. To do this we need "demand"
continuity from the par toucher to all the relevant tasks.

These issues lead to the following four requirements, which we think of as additions to
our simplified requirement 5 in Section 8.1.1:

1. The user must be able to specify initial priorities for the disjunc'L

2. At least one disjunct must obey demand transitivity

3. There must be demand continuity to ensure group coherence

4. par must spawn the disjunct tasks as quickly as possible without being preempted
and blocking the task invoking the par.

8.1. POR AND PAND 149

8.1.5 Speculative por: version 2

In this section we present a version of por which meets these additional four requirements
This version adopts very simple (and inflexible) methods to address the underlying issues
but it is a start.

We let the user list an initial priority with each disjunct in the argument list. We assume
that the user arranges the disjuncts so that they are in non-increasing priority order from
left to right. Thus a static left-to-right spawning order encourages the evaluation of the
highest priority disjuncts first if there are insufficient processors available while conforming
to our earlier requirement 5. The initial priorities let the user convey the relative pirmise
of the thunkc. The management of these priorities in face of changes inside and outside the
por is left to the user. Thus the deeper issues of initial scheduling have been pushed to the
user level.

We combine groups and classes to obtain a group with a primitive controller sponsor.
This allows us to easily name all the por tasks for staying and provide group coherency. Task
source priorities, specified by the initial disjunct priorities, provide the eager scheduling
component. The class sponsor distributes touch sponsorship, thereby ensuring demand
transitivity and providing the demand-driven scheduling component. To provide group
coherency we insist on demand "continuity": the sponsor chain must be unbroken from the
result placeholder to the disjunct tasks.

In this version, shown in Figure 8.3, we use a type all class to sponsor all the disjunct
tasks. We call this the touch all policy because the class effectively distributes the touch
to all the disjunct tasks. The marked lines in Figure 8.3 indicate the major changes from
Figure 8.2. Line 2 creates the type all class for all the disjunct tasks. Line 3 installs
this class as the sponsor class of the result placeholder. Thus the maximum-priority task
touching the result placeholder sponsors all the class members. Line 7 adds the make-group
task created in line 9 to the class so that disjunct spawning may be restarted if the por
is restarted after being stayed. (The group-:future in line 8 extracts the future object
from the group object created in line 9.) Note that in order for the result placeholder to
become available, the por invoker must execute lines 7 to 9 and therefore the make-group
task must be a member of the class before any tasks demand the por result. Thus there
is no lapse in demand continuity here that could lead to deadlock. Finally, line 5 adds the
disjunct tasks to the class so that they will be sponsored by the tasks blocked on the result
placeholder and thus may be restarted. Since any tasks demanding the per result sponsor
the make-group task, this task must execute line 5 (provided some disjunct does not first
determine the result) and thus there is no lapse in demand continuity here either that could
lead to deadlock.

The make-group task created in line 9 has maximum priority (*max-pri* is bound to
MAX) so that it quickly spawns all the thunk evaluator tasks. Since this is all that this task
does, which should not take very long, we do not worry about this task possibly blocking
the parent task if there are insufficient processors.

Once the procedure eval-thunk determines the result placeholder, the class is no longer

150 CHAPTER 8. APPLIATIONS

(define (por thunk-pri-list)

(let* ((lock (cons '*no-result* (make-future)))
(class (maka-clasx *class-all*)) ; 2

(result (make-future class))) ; 3

(define (spawn-tasks thunk-pri n)

(if (null thunk-pri)

(dotermine-future (cdr lock) n)

(let ((thunk (get-thunk (car thunk-pri)))

(priority (get-priority (car thunk-pri))))
(add-to-class, 4

(spec-iuture (eval-thunk thunk) priority) ; 6
class)

(spawn-tasks (cdr thunk-pri) (+ n)))))

(define (eval-thunk thunk)
(let ((v (thunk)))

(if v
(it (rplaca-eq-nand lock '*result* '*no-result*) ; 6

(begin
(determine-future result v)

(stay-group (group-id (my-group-obj)))))
(if (eq (car lock) '*no-result*)

(term-detect (cdr lock))))))

(define (term-detect n)

(if (rplacd-eq lock (- n 1) n)
(if (- n 1)

(determine-future result nil))

(term-detect (cdr lock))))

(add-to-class 7

(group-future 8
(make-group (spawn-tasks thunk-pri-list 0) *max-pri*)) ; g

class)

result))

Figure 8.3: per implemented with speculative tasks; version 2

thunk-pri-list is a list of thunk, priority pairs.

8.1. POR AND PAND 151

sponsored. This would stay the disjunct tasks if they had no other support. However, they
still might be sponsored by their source priority settings and descendants of the disjunct
tasks would not necessarily be stayed. Thus we still need to stay the group (and thus we
still need the sake-group construct in line 9). This poses a problem. We want to stay the
group and we want to do it after we determine the result placeholder so staying is not in
the critical path of returning the result. However, the determining task may be stayed aJ a
result of determining the result placeholder and never get to stay the group. To solve this
problem we promote the determining task to nandatory status with the rplaca-sq-mand
in line 6.6

Unlike the previous version of por, this version actually uses the future objects returned
by make-group and spec-f uture for sponsor propagation.

One problem remaining with this version is that the initial priorities - which represent
the eager component - are lost if we stcy the por since there is no modularity. However,
at least there is no deadlock since the class provides 'demand" continuity.

8.1.6 Speculative por: version 3

This version of por is the same as the previous version except for the touch policy. This
version sponsors the disjunct tasks (by actually touching them) in the left to right order of
their appearanrm in the argument list. It touches each task until either the task terminates
(returning true or false) or a true result is found elsewhere and all por activity is stayed.
We call this the touch order policy. It only touches tasks when necessary and thus is the
opposite of the touch all policy.

Figure 8.4 shows this version. Once again we use a class to ensure demand continuity to
the spawner task. The spawner task spawns n thunk evaluator tasks, and then touches each
task in turn in line 8 until it finds a true result or is stayed. If spawner finds a true result,
the result placeholder must have already been determined so spawner just terminates. If
the spawner does not find a true result, it determines the result placeholder to nil. Thus
spawner performs centralized termination detection in this version of por. To facilitate this
centralized termination detection, each of the disjunct tasks returns its value (line 5).

In line 7 we reduce the priority of the spawner task to the minimum running priority
(*min-pri* is bound to 1) so the parent task will not be blocked by the spawner task
if there are insufficient processors and so that termination detection does not disturb the
initial priority of the disjunct tasks (until the por is touched).

Centralized and distributed termination detection each have their advantages and disad-
vantages. The centralized termination detection here requires an extra task (for termination
detection) whereas the distributed termination detection in previous versions spreads this
overhead amongst all the disjunct tasks. It is not clear which is more efficient. (In fact,

6The promotion to mandatory status does not have to be atomic with the lock here. Instead, we could
insert proaote-tuk just before determine-future.

152 CHAPTER 8. APPLICATIONS

(define (per thunk-pri-list)

(let* ((lock (cons '*no-result* nil)) ;i
(claus (make-class *class-all*)) ; 2
(result (make-futute class)))

(define (spawn-tasks thunk-pri)
(it (not (null thunk-pri))

(let ((thunk (get-thunk (car thunk-pri)))
(priority (get-priority (car thunk-pri))))

(cons (spec-future (eval-thunk thunk) priority) ; 3
(spawn-tasks (cdr thunk-pri))))))

(define (eval-thunk thunk)
(let ((v (thunk)))

(if V
(if (rplaca-eq-mand lock '*result* '*no-result*) ; 4

(begin
(determine-future result v)
(stay-group (group-id (my-group-obJ))))))

v))

(define (spawner thunk-pri-let) 6
(let ((thunk-values (spawn-tasks thunk-pri-lst)))
(change-priority (my-task) *in-pri*) ; 7
(if (not (true-value thunk-values)) ; 8

(determine-future rusult nil))))

(define (true-value value-list)
(if (not (null vlue-list))

(if (car value-list)
I#t

(truo-value (cdr value-list)))))

(add-to-class g
(group-future ; 10

(make-group (spawner thunk-pri-list) *max-pri*)
class)

result))

Figure 8.4: por implemented with speculative tasks; version 3

thunk-pri-list is a list of thunk, priority pairs.

8.1. POR AND PAND 153

Version Avg. time Avg. time to determine result
to return Identical disjuncts Number of disjuncts

placeholder 1 1 2 1 4

Mandatory por 6.9 (lambda () '#t) 15.9 16.5 15.7
(lambda nil) 20.1 25.9 36.5

por version 8.2 (lambda () '#t) 19.0 19.6 18.6
_ (lambda (nil) 21.2 26.5 42.2

por version 2 12.1 (lambda 'I#t) 22.2 23.1 21.6
(lambda) nil) 26.9 38.5 55.1

por version 3 12.1 (lambda () '#t 21.5 21.9 20.1
_"(lambda () nil) 25.2 32.1 47.4

All times in milliseconds, on Concert Multiprocessor with 32 processors. Standard
deviation in all results was about 0.5 msec.

Table 8.1: par operation times

the data in Table 8.1 suggests that the overheads are aboutt the same.) In any case, the
centralized termination detection is combined with a sponsor distribution policy that must
be centralized for efficiency anyway.

8.1.7 Measurements

To gauge the overhead contributed by our support for speculative computation, we measured
the performance of the four por versions we presented. For each version, we measured the
time required on the Concert Multiprocessor (using 32 processors) to:

1. return the result placeholder once por is called. We call this time the invocation
overhead - it is the minimum time for which the progress of a task is impeded after
invoking per.

2. return the result (i.e. determine the result placeholder) for argument lists of 1, 2, and
4 thunks. The thunks were either all (lambda C) #t) - to evaluate the time to
return the first true value - or (lambda) nil) - to evaluate the time to spawn
all the tasks and return false.

Table 8.1 shows the results. With each version, the return time for (lambda () '#t)
thunks first increased slightly as the number of thunks went from 1 to 2 and then decreased
as the number of thunks further increased to 4. The reason for this phenomenon is not
clear; the phenomenon did not occur on the Encore Multimax. (lambda () '#t) takes
about 0.8 msec to evaluate, which is about a third of the time that it takes to spawn a
task. Thus the first task spawned always determines the result placeholder. Therefore the

154 CHAPTER 8. APPLICATIONS

Version Invocation Setup Spawn
I overhead overhead overhead

Mandatory pot 7 16 5
por version i 8 19 7
por version 2 ! 12 22 9
por version 3 12 21 7

All times axe averages in milliseconds.

Table 8.2: por overhead on Concert Multiprocessor

determine result time for this type of thunk really indicates the time until the first task is
spawned. We call this time the setup overhead. Likewise, (lambda () nil) takes much
less time to evaluate than the time to spawn a task. Thus the determine result time for
this type of thunk really indicates the time to spawn all the tasks. This is the reason the
determine result time with (lambda 0 nil) thunks increases with the number of thunks.
The differential in determine result times with n and n + 1 thunks is the por's overhead of
spawning a task (calling spawn-task, actually creating the task, and perhaps adding it to
a class or whatever). We call this time the spawn overhead.

Table 8.2 indicates the overhead times. With the mandatory version aw a base case,
we see that group and speculative task creation in version 1 impose an additional 1, 3,
and 2 msec. in the invocation, setup, and spawn overheads respectively. Class creation and
manipulation in version 2 add a further 4, 3, and 2 msec. to these overheads respectively.
Version 3 has almost the same overhead as version 2 except for the spawn overhead, which
reflects the lack of class manipulation time in other than the make-group task. Versiohs 2
and 3 are about the simplest versions that meet the minimal requirements for por and thus
their rather large overheads are not encouraging. However, there are many optimizations
remaining for task creation and class manipulation that should substantially reduce these
overheads. Certainly, the overhead with more complex versions, such as with full controller
sponsors, will be much greater.

8.1.8 Generalizations

There are three major generalizatioLs to the versions of pox presented here:

1. Arbitrary policies for the scheduling and management of disjunct tasks.

Since we do not have full controller sponsors, this generalization is currently beyond
our scope.

2. Dynamic number of disjuncts

8.2. TREE EQUAL 155

(define (tree-equal? treel tree2)
(if (pair? treal)

(if (pair? trt*2)
(and (tree-equal? (car trial) (car tree2))

(tree-aqua't (cdr treal) (cdr tree2)))
nil)

(equal? treal tree2)))

Figure 8.5: Sequential version of tree equal

Allow the ability to create disjuncts for the por calculation other than those initially
specified as arguments. This takes por more into the realm of tree search. It is quite
straightforward to extend our versions of por in this direction.

3. Result streams

Return successive results in a stream. Again, it is quite straightforward to extend our
versions of por in this direction.

Using the basic primitives that we have provided, the user can build his own 'libraries'
of different conitructs like po- to suit the applications at hand. Unfortunately, doing so is
trickier than we would like due to concerns about demand continuity to prevent deadlock.

8.2 Tree Equal

This application is essentially tree structured pand, the second generalization of pand men-
tioned in Section 8.1.8. This application clearly demonstrates the importance of aborting
useless computation, though it is a bit contrived. However, the benefit of artificiality in this
case is a clear and simple presentation of the issues. We use this application to demonstrate
why we want special support for aborting useless computation and not explicit termination
checking.

The tree equal problem is to determine if two trees are equal in the usual Lisp sense
(see p. 14 of (Rees]), that is, if the two trees have the same structure and the fringe (leaf)
elements are respectively equal. Figure 8.5 shows a sequential solution to the tree equal
problem for binary trees composed of conses.

In the remainder of this section, we explore parallel versions of this solution. Figure 8.6
shows a version which we call the eager version. This eager version creates 2

*frk- l evdl *

tasks which each perform tree-equal? sequentially on subtrees of the original trees. The
first task to discover unequal subtrees determines the result placeholder to nil (by calling
fail), causing etree-equal? to return nil. If all the tasks find that their subtrees are equal,
the line labeled 1 determines the result placeholder to '#t. Thus this version amounts to

156 CHAPTER 8. APPLICATIONS

(define (etree-equal? treel trse2)
(let ((lock (conm I*undetermined* nil))

(result (make-future)))

(define (int-equal tI t2 level)
(it (pair? t1)

(it (pair? t2)
(it (< level *fork-level*)

(lot ('right-branch
(future
(int-equal (cdr ti) (cdr t2) (+ level 1)))))

(and (Int-tree-equal (car ti) (car t2) (+ level 1))
right-branch))

(it (and (tree-equal? (car ti) (car t2))
(tree-equal? (cdr tI) (cdr t2)))

'Mt
(tail))

(if (equal? tI t2)
lot
(fail))))

(define (fail)
(it (rplaca-eq lock '*determined* '*undetermined*)

(determine-future result nil))
nil)

(future (if (:Ant-equal treel tree2 0)
(dletermine-future result '#t))) ; 1

result))

Figure 8.6: Eager version of tree equal

8.2. TRES EQUAL 157

ITree compared fNumber of Version J SpeedupI
with tretO errors Sequential Eager of Eager

tree} 0 13.5 1.78 7,6
treel 3 1.61 0.67 2.4
tre2 1 3.10 1.39 2.2
tree3 1 6.38 1.31 4.9
tree4 1 12.1 0.36 34
treeS 1 4.27 0.98 4.4
trec6 2 10.1 0.53 19
tree7 1 2.79 1.04 2.7
tree"S 2 0.70 0.71 1.0
tree9 3 0.92 0.90 1.0

All times are in seconds.

Table 8.3: Execution time of tree equal versions on various trees

the (mandatory) pand of tree-equal? on the subtrees. (Compare with the mandatory par
in Section 8.1.2). We could also have implemented thLs eager version as nested pands. We
chose to 4flatten' the tree into a single pand for efficiency reasons. This eager version adds
conjuncts dynamically once it has started; thus it is an example of the second generalization
of pand discussed in Section 8.1.8. This version iucorporates static scheduling controlled
through the the global variable *fork-ltvel* because we wanted to avoid the issues with
dynamic scheduling7 for this application and focus on aborting useless computation (which
we will do shortly). All the results reported in this section are for *fork-level* set to 3
and 8 processors, so that 2 efo rk- l ev al ° < the number of processors.

To compare the performance of different versions, we created a 'base tree" of depth
13 (8192 leaf elements) and from this base tree generated nine other binary trees with the
same number of elements by randomly miscopying elements of the base tree. Each element
of the base tree was miscopied with probability 0.0001. We ran both the sequential and
eager versions comparing each of these nine trees with the base tree, treeO. Table 8.3 shows
the results for 8 processors on the Encore Multimax. The speedup of the eager version
over the sequential version depends greatly on thr location of the error(s) in the trees.
The appreciable, and even superlinear, speedup that we get demonstrates that speculative
computation is useful in this application. Another attribute of speculative computation in
this application is a reduction in the variance of the execution time. The execution time of
the sequential version varies from 0.70 sec. to 10.1 sec., whereas the execution time of the
eager version varies from 0.36 sec. to 1.78 sec., a fivefold reduction in the dynamic range.

7The Issues surround how to 'impedance match* the application parallelism to machine resources. Or,
more simply, how to keep an unknown number of processors busy without creating and buffering an excessive
number of tasks. Impedance mismatch is a major weakness in Multillsp. Methods to deal with such mismatch
are the subject of some promising current research. See the remarks on "lazy, futures in [Kranz).

158 CIIAPTER 8. APPLICATIONS

p 3 E(.I... (6 J E&~D.(.ir................ .. S t,* .. J...... - NJ ' ..

i~f~ i
in

Figure 8.7: Consecutive invocations of etree-equal?

Such robustness in execution time is a general property of spcculnkiva computation which
arises from trying several alternatives concurrently.

Although the eager version achieves the aim we want most with speculative computation
-reduced execution time - it has a problem: it does not abort ustdcss computation. Tile

effect of useless computation does not show up in Table 8.3 because thcre was no other
computation competing for machine resources. This would not normally be the case in
practice: we would "epet the tree equal problem to be embedded in some larger computa-
tion. To demonstrate the effect of useless computation, we ran five consecutive invocations
of the tree equal problem with the cager version. The average execution time per invocation
comparing trecO and treel was 1.22 sec., almost double the execution time (0.67 sec.) of a
single invocation.

The ParVis display (See Appendix C for an explanation of ParVis displays) in Figure
8.7 clearly shows what happened. Each invocation is demarcated by the heavy vertical
line denoting task creation. The first invocation, for instance, is in the lower left corner.
This invocation creates eight tasks, the dark horizontal bars. The hollow horizontal bar is
the result placeholder; its length denotes the execution time of the invocation. This first
invocation returns a result when the third task (from the top) discovers a mismatch and
determines the result placeholder to nil. The seven other tasks, now useless, remain running
and interfere with the second invocation. Likewise, useless tasks from each invocation
interfere with the following invocation.

Thus this example, while a bit artificial with its large trees and consecutive invocations,
clearly demonstrates the importance of aborting useless computation. The only issue is
how: should the user cause every task to explicitly check for I mination or should there
be special support in the language for terminating tasks?

We introduce a version of tree equal with explicit termination detection by first present-
ing a naive parallel version in Figure 8.8. This naive version merely performs tree-equal?

8.2. TREE EQUAL 159

(define (ptree-equal treel tree2)

(define (int-equal ti t2 level)
(it (pair? ti)

(it (pair? t2)
(it (< level *t)ork-level*)

(let ((right-branch
(Iutvye

(int-equal (cdr ti) (cdr t2) (+ level 1)))))
(and (int-equal (par ti) (tar t2) (+ level 1))

right-branch))
(and (tree-equal? (car ti) (car t2))

(tree-equal? (cdr t1) (cdr t2))))
nil)

(it (equal? tI t2)

nil)))

(int-equal treel tree2 0))

Figure 8.8: Naive parallel version of tree equal

on all the subtrees in parallel and ands all the results. Not only does this version possibly
generate useless computation, but it also incorporates no indeterminacy in which subtree re-

turns a false result. If a mismatch is detected in the rightmost subtree, this result cannot be
returned until all the subtree matches to its left have completed. That is, the naive version
performs termination detection of nondeterministic computations in a fixed, deterministic
order.

Figure 8.9 shows the naive version modified to perform explicit termination detection.
We call this new version the checking version since every task periodically checks for ter-
mination. The first task to discover unequal subtrees sets the failed-yet? slag (by calling
tail) causing the other tasks to terminate, returning a nonsense value, when they call
tree-equal?. Since terminated tasks return a value we can still perform the termination
detection in a fixed, deterministic order, like in the naive version, but now return the first
false result. Note, however, that all code called by the checking version -just tree-equal?
in this case - had be modified to perform termination checking.

By contrast, the speculative version shown in Figure 8.10 required no changes in called
code; it is basically just pand modeled on version 3 of por in Section 8.1- each task touches
its children to ensure their completion if a result has not already been returned. The global
variable *fork-priority* specifies the initial priority of the tasks.

Table 8.4 shows the execution time of the eager, checking, and speculative versions for

iCO CHAPTER 8.APPLICATIONS

(define (ctrao-equal? treal tree2)
(let ((ailed-yet nil))

(dufiue (fail)
(setq tailed-yet? 'Xt)
niil)

(define (mt-equal ti t2 level)
(if (pair? ti)

(if (pair? t2)
(il (< level *fork-level*)

(lot ((right-branch
(future

(mnt-equal (cd~r ti) (cdr t2) (+ level 1)))))
(and (int-equal (car t1) (car t2) (+ level 1))

right-branch))
(if (and (tree-equal? (car t1) (car t2))

(tree-equal? (cd~r ti) (cdr t2))

(it (equal? ti t2)
'Mt

(define (tree-equal? ti t2)
(it tailed-yet?

nil
(it (pair? ti)

(it (pair? t2)
(and (tree-equal? (car ti) (car t2))

(tree-equal? (cdr ti) (cdr t2))
nil)

(if (equal? ti t2)
'Mt
nil))))

(mnt-equal treel tre!t2 0M)

Figure 8.9: Checking version of tree equal

8.2. TREE EQUAL 161

(define (stree-equal? treol tree2)

(let* ((lock (cons '*undetermined* nil))

(class (make-class *class-any*))

(result (make-future class)))

(define (nt-equal ti t2 level)

(if (pair? ti)
(if (pair? t2)

(if (< level *f ork-level*)

(let ((right-branch
(spec-future
(int-equal (cdr ti) (cdr t2) (+ level 1))
*fork-prioritye)))

(and (int-equal (car ti) (car t2) (+ level 1))
right-branch))

(if (and (tree-equal? (car tI) (car t2))
(tree-equal? (cdr tI) (cdr t2)))

't
(fail)))

(fail))

(if (equal? ti t2)
'#t
(fail))))

(define (fail)

(if (rplaca-eq-mand lock '*determined* '*undeterminei*)
(begin
(determine-future result nil)

(stay-group (group-id (my-group-obJ)))))
nil)

(add-to-class

(group-future

(make-group

(if (int-equal (car treel) (car tree2) 0)
(determine-future result '#t))

fork-priority))

class)

result))

Figure 8.10: Speculative version of tree equal

162 CHAPTER 8. APPLICATIONS

Tree compared Versionwith tree0 [Eager Chekin Speculative

treeO 1.78 1.96 1.86
trcel 0.67 0.72 0.72
trce2 1.39 1.54 1.49
trce3 1.31 1.50 1.44
tree4 0.36 0.40 0.37
trcc5 0.98 1.07 1.02
tree6 0.53 0.59 0.54
tree7 1.04 1.10 1.10
tree8 0.71 0.83 0.74
trce9 0.90 1.02 0.93

All times are in seconds.

Table 8.4: Execution time of tree equal versions on various trees

Version Total time

Eager 6.10
Checking 3.85

Speculative 3.67

All times are in seconds.

Table 8.5: Time to perform five consecutive comparisons of tree0 and tree1

the same ten comparisons as in Table 8.4. In every case, the speculative version is as fast
or slightly faster than the checking vermion. Thus the speculative version is slightly more
efficicnt. Both versions are slightly slower than the eager version: this is the overhead of
termination detection.

Table 8.5 shows the total time for five consecutive invocations of each of tree equal
comparing trecO and tree1. Again, the speculative version is slightly faster than the checking
version.

While explicit termination detection may be acceptable in this application, even though
it required changes to called code, it does not generalize well. It saffers from the three prob-
lems described in Section 2.2.1: inserting the termination checking, termination detection
of nested computation, and termination detection of shared computation.

The special language support we have added to Multilisp for aborting useless com-
putation avoids the problems with explicit .hecking. This support does not burden the

8.3. EMYCIN 163

programmer like explicit checking does and hence adds expressive power, making it easier
to exploit the computation power of speculative computation.

8.3 Emycin

This application showcases pand used on a large scale, both as independent and nested
invocations, and features the interaction of side-effects and speculative computation. The
application is based on a kernel of Emycin written in Multilisp by Krall and McGehearty
and described in [Krall.8 Emycin is a complete rule-based expert system with a backward-
chaining rule inference engine, a human interface, and a rules development system [Melle].
Krall and McGehearty's kernel includes only the rule inference engine.

Inferencing in Emycin begins with a list of hypotheses and works backwards using a
given sct of inference rules to determine the truth of each hypothesis. Each hypothesis is
a premise, postulating the value of some parameter. The certainty of each such premise
(and all unknowns in Emycin) is measured by a numerical value in the range [0,1000] where
200 is the threshold for true. The certainty of each premise is determined by tracing all
applicable inference rules for the parameter in the premise. Each inference rule has one of
the two following forms

P, or P2 ... or Pn -4 Al, A2, ... , Am
P and P2 ... and P, -* A,, A2 , ... , Am

where the P are premises and the Ay are actions to be performed if the rule is deemed
true. These premises are either postulations about parameter values, like the premises
in the hypotheses, or and/or trees of such postulations. The actions describe conclusions,
where each such conclusion is the (conditional) certainty to conclude for a specific parameter
value. A rule is applicable for a given parameter if any action Ai of that rule pertains to
that parameter.

Tracing a rule means computing the predicate certainty of the rule and if this certainty
exceeds 200, deeming the rule true and performing the rule's actions. Denoting the premise
tree of the rule by P (so the rule is P -4 Al, A2,..., Am), the predicate certainty of a rule
is precisely the certainty of premise P which is computed recursively as follows:

certainty(P)= pi
certainty(P or P2 or P3 ... or P,)= maz(pl, p2, ... , Pn), and
certainty(P and P2 and P ... and P,)= min(pl, p2, ... , pn)

where p, is the certainty of premise 1. Performing the rule's actions involves updating
the certainties of the parameter values specified in the rule's actions. The details of this
updating are not relevant here: it suffices to say that the final certainty of a parameter value

"We thank the authors, Ed Krall and Pat McGehearty, and MCC for permission to use this kernel.

164 CHAPTER 8. APPLICATIONS

is a function of the predicate certainty and conditional certainty specified in the action of
each applicable rule for that parameter.

Tracing is itself recursive, the certainty of a simple premise (which is not a combination
of other premises) is determined by tracing all applicable rules. If there are no applicable
rules for a simple premise, the certainty is determined by consulting a database and if that
fails, querying the user. Thus rule tracing always terminates with the input premises.

Krall and McGehearty's kernel is straightforward. As mentioned above, it includes
only the rule inferencing engine: it has no user interface. Thus all input premises and
their certainties are contained in the database. All parameters and rules arc maintained
on property lists. There are three types of property list. (plists): parameter plists, rule
plists, and an answer plist. Each parameter has a property list giving all the applicable
rules for that parameter. Since the rules are fixed during inferencing, the rules are pre-
searched to determine the applicable rules for each parameter. Each rule has a property
list containing the premises and actions for that rule. (Recall that a premise is an and/or
tree of postulations about parameter values.) The answer property list holds all parameter
values and their certainties. This answer property list functions as the database. The
answer database is initialized to the parameter values and certainties specified by the input
premises. Thereafter, the answer property list is updated by side-effect: new parameters
are added as inferencing proceeds and the certainties of existing ones are updated by rule
actions.

Two forms of synchronization must be obeyed:

1. All tracing of the applicable rules for a parameter must complete before that param-
eter's certainty is used in other rules. This restriction ia necessary to guarantee that
the certainty is correct before other rules start using its certainty in their calculations.

2. Each rule must not be invoked more than once. This restriction is necessary to prevent
erroneous certainties by performing a rule's actions multiple times.

This synchronization is trivial in Krall and McGehearty's sequential kernel.

In their paper, Krall and McGehearty describe several modifications to parallelize their
kernel. Five modifications they describe are:

1. tracing all hypotheses in parallel (one task per hypot',esis),

2. applying all the applicable rules for each parameter in parallel (one task per rule),

3. associating a flag which each rule so that no rule is invoked more than once,

4. associating a semaphore with each parameter to prevent the use of the parameter
until all applicable rules for that parameter have been traced, and

5. tracing the disjunct premises comprising an or in parallel (one task per disjunct).

8.3. EMYCIN 165

(define (alltrue premises)
(i:f (null (cdr premises))

(testpremise (car premises))
(min (future (testpremime (car premises)))

(alltrue (cdr premises)))))

(define (min a b)
(if (< a b)

a
b))

Figure 8.11: Naive parallel and

We started with Krall and McGehearty's sequential kernel with these five modifications and
a number of optimizations. The most significant of these optimizations was replacing the
semaphores in the fourth modification with locks? We describe these locks shortly. The
rest of the optimizations were minor."0 We call the resulting kernel the basic parallel kernel.

In the rest of this section we investigate parallelizing this basic kernel further using
speculative computation. The most obvious remaining source of parallelism is parallel and,
i.e. tracing the conjunct premises comprising an and in parallel. Krall and McGehearty
investigated a naive parallel and: they simply parallelized the minimum operator. (Recall
that the and of premises actually means the minimum of the premise certainties.) Figure
8.11 shows this naive parallel and. Each conjunct of the and (if indeed we can still call it
that) is computed in parallel and all conjuncts are required to form the result, even- if a
false result is already guaranteed by a conjunct found with a certainty less than 200. Thus
this version suffers from both useless computation and determinacy in returning the result.
Nevertheless, Krall and McGehearty found that this parallel and significantly improved
performance in their simulations [Krall] (for the gems data set described later). However,
they noted this improvement was accompanied by a major increase in the inefficiency of
resource use by useless computation, which could degrade overall performance if insufficient
processors are available. They suggested using a speculative and but had no way to follow
this up. The idea is to compute the analog of logical pand on the premise certainties:
compute the premise certainties in parallel and if any have certainties less than the true
threshold 200, immediately return 0, i.e. false, and abort any rtmaining computations.
Otherwise, return the smallest certainty. The fact that we return the minimum in this
later case, rather than true (i.e. 1000) is a slight departure from logical paxid, but we will

'We could have used delays Instead of locks (we will not go Into the details here though). We decided
to use locks to minimize changes to the code and to demonstrate a practical ap.plication of our methods
presented in Chapter 7 for handling locks in speculative computation.

"°We did not include any of the language optimizations that Krall and McGehearty discussed, namely,
adding language primitives for parallel mapcar (pmapcar), for touching the elements of a list for synchro.
nization (touchluit), and for property list operations (putprop and getprop).

166 CHAPTER 8. APPLICATIONS

; Trace applicable rules for parameter parm
(define (traceparm parm)

(let ((rules (get parm 'rules))
(parm-lock (get parm 'lock))) ; lock cell initialized to (nil nil)

(if (rplaca-eq
parm-lock
(delay (progn (traceparm2 rules) ; trace rules

1#0) ;reset lock
nil)

(touch (car parm-lock)))

Figure 8.12: "Delay-device" solution to locking problem in Emycin

continue to refer to it as an analog of pand, or just pand.

(Note that there is nothing to be gained by using an analogous por since the certainty of
or'd premises is the maximum of the disjunct premise certainties. Hence all the certainties
must be calculated.)

There is a problem with the naive use of pand in this application: a conjunct or one of its
descendants may be in possession of one of the parameter locks when the conjunct is stayed.
This could lead to the speculative deadlock discussed in Section 7.3.1 if another non-stayed
task is waiting for the lock. We circumvented this problem using the "delay-device" trick
presented in Figure 7.2 to solve the same problem with general spin-locks. However, the
problem here is a little simpler than with general spin-locks since the critical region is only
entered once. Thus our solution in Figure 8.12 is slightly different than that in Figure 7.2.
The first task to grab the lock traces the rules and the remaining tasks block on the delay
to ensure that rule tracing completes even if the parent task of the delay is stayed. The
lock is reset to '#t here to avoid tracing the rules more than once.

We investigated five versions of the Emycin kernel. The five versions were:

1. Sequential and - (Base version)

This version consisted of the basic parallel kernel described above, sequential and, and
the locking described above. (The solution in Figure 8.12 turns out (in Multilisp) to
be a very cost effective alternative to other locking methods, such as semaphores, so
we used it even when speculative deadlock was not a concern.)

2. Naive parallel and

Same as the base version, but with the naive parallel version of and in Figure 8.11
used by Krall and McGehearty.

3. Mandatory pand

8.3. EMYCIN 167

Version Inferencing time
Almandine l[Peridot

Average td. Dee. Average Std. Dev.
Sequential and 2.98 0.05 3.84 0.06
Naive pand 2.31 0.07 2.63 0.06
Mandatory pand 2.39 0.07 2.64 0.07
pand version 2 2.28 0.13 2.53 0.09
pand version 3 2.66 0.34 2.93 0.17

All times in seconds. Statistics for 20 runs.

Tablu 3.6: Emycin inferencing times for almandine and peridot inputs

Same as the base version, but with the analog of mandatory par in Figure 8.1.

4. pand version 2

Same as the base version, but with the analog of par version 2 in Figure 8.3.

5. pand version 3

Same as the base version, but .,-UL the analog of por version 3 in Figure 8.4.

We used the same gems data set as, Krall and McGehearty. This data set consists of 33
hypotheses abo-t the type of gem, 29 g.m parameters, such -s color, hardness, and mineral
species, and 99 rules. The object is to idtmtify the type of .. a fron the input parameters.
We used two set:, of input parameters, o5 ,for which E~y.a infers the gem almandine, and
the other for which Emycin infers the ger :.eridot. Hereafter we call these two sets of input
parameters ualmandine inputs" and "pe" .ot inputs" respectiw.;. Both f these input sets
were produced by by Krall and McGehearty. Their paper ony reported results with the
almandine inputs.

The gems data set is a good candidate for pand since the rules use and almost exclusively
and many rules invoke other rules recursively. Thus Emycin with the gems data set is a
good example of both pand used on a large scale and nested pand invocations.

Table 8.6 shows the results for the almandine and peridot inputs on the Concert Mul-
tiprocessor with 32 processors. On the basis of 20 runs fc each set of inputs, the exe-
cution times3 of the naive and mandatory pand versions are statistically indistinguishable.
This means either that all the conjuncts of the ands must bE true, thus eliminating the
mandatory version's advantage of nondeterminacy in returning the result, or that the extra
overhead ot the mandatory version must essentially counteract this advantage. The data
in Table 8.7 indicattes that many premises are false so the latter must be the reason. The
execution time - pand version 2 is only slightly less than the execution times of the naive
and mandatory %, rsions. (This difference is barely significant since the means are only
one standard deN i.tioa apart.) Thus there must either be little opportunity for speculative

168 CHAPTER 8. APPLICATIONS

Input Number conjuncts false Number ands false
from ands that have > I

with > I conjunct conjunct

Almandine 189 77
Peridot 11 180 76

The gems database has 81 ands with more than one conjunct. These 81 ands have a total
of 257 conjuncts.

Table 8.7: Characteristics of Emycin with aimandine and peridot inputs

.5 2.13

Figure 8.13: Parallelism profile with sequential and

computation with this data set, contrary to our expectations, or the overhead of the pand
must be defeating its advantage. The execution time of pand version 3 is worse than the
execution time of the naive and mandatory versions. There could be two retons for this
degradation with respect to version 2. First, termination detection in version 3 is central-
ized, requiring a termination detection task in addition to the conjunct tasks, whereas the
termination detection in version 2 is distributed. Second, version 3 propagates demand for
the pand result on to the conjunct tasks only when the termination detection task touches
each of these tasks in turn. In version 2, demand for the pand result is propagated to all
the conjunct tasks via tie type all class of which all the conjunct tasks are members. To
separate these effects, we tried a modification of pand version 3 in which all the conjunct
tasks and the termin ttion detection tasks were members of a type all class like in version
2. The results for this modified version 3 were essentially the same as for version 2. Thus
the class sponsor policy is the reason for the difference between pand versions 2 and 3.

Figures 8.13 through 8.16 shows parallelism profiles (extracted from Parvis displays)
for the sequential, naive pand, mandatory pand, and pand 2 versions respectively for the
almandine inputs. The parallelism profiles for the peridot inputs are very similar to these.

Total tflA 2.42 .weonde an Coccrt Mllthioc...oo Cfrom t.ate.paw)

Figure 8.14: Parallelism profile with naive pand

8.3. EMYCIN 169

Total %1" 2.22 ose, on o oL Nlo 0 al

Figure 8.15: Parallelism profile with mandatory pand

total tif's 2.21 .oen eon C Wt jrltIEe "Ae. i i..te d1...')

.$

Figure 8.16: Parallelism profile with pand version 2

The parallelism profile for the sequential version in Figure 8.13 features three peaks of
parallelism, each which almost saturates the machin, separated by deep valleys of very
little parallelism. The first peak is due to the explo.ion of parallelism from tracing all 33
hypotheses in parallel. At about 0.5 seconds the parallelism falls off rapidly because almost
all the rules are blocked waiting for the certainty of the key mineral species parameter.
Only a few rules pertain to this parameter, so parallelism is poor until this parameter is
fully traced at about 1.3 seconds. At this po:nt, all the rules waiting for the mineral species
parameter resume, resulting in the second peak of parallelism. After these rules evaluate
their predicate certainties and take their actions, few applicable rules remain, accounting
for the decrease in parallelism. At about 2.7 seconds the certainty of the gems parameter
is finally computed. Each hypothesis task then evaluates the certainty of its hypothesis,
resulting in the final peak of parallelism.

The other pancl versions trace all the premises of each and rule in parallel. This means
if one premise blocks on the evaluation of a parameter like mineral species, other premises
may still continue. And, in fact, if one of these other premises evaluates to false, the rule
may conclude without waiting for the blocked premise. This increased parallelism is evident
in the remaining parallelism profiles.

The parallelism profiles for the naive and mandatory pand versions in Figures 8.14 and
8.15 are almost identical. Both feature three peaks of parallelism as in the sequential ver-
sion. The first peak is much longer, though, due to all the rules that can fire in parallel.
This additional parallelism mostly fills in the first valley. However, the increased computa-
tion (some of it unnecesaary) also delays the second peak slightly. Some of this increased
computation is merely computation that would have been performed anyway, but after the
second peak. This shift in the timing of rule tracing accounts for the decrease in the width
of the second valley Thus mandatory parallelism does what we would expect. it has filled
in some of the valleys of the sequential version and decreased the total execution time.

The parallelism profile for the pand version 2 in Figure 8.16 is very interesting. The
first valley is now completely filled in (though there is a slight dip where it used to be) and

170 CHAPTER 8. APPLICATIONS

total I i" 2.12 &4 "4 on Cw~oq, ft'l * l.ee,% It, ttr .i.4-4.pw)

Figure 8.17: Parallelism profile for pand version 2 without staying

almost all the work is performed before 1.5 seconds. If it were not for the long portion after
1.5 seconds with only one or two rules active, this version with speculative parallelism would
be significantly faster than the previous versions rather than just barely faster. Figure 8.17
shows the parallelism profile of pand version 2 with staying disabled. Note that the first
valley is no longer completely filled in. Thus the complete fill-in of this first valley is due
to aborting useless computation. The parallelism in the naive and mandatory versions
only p rtly overlaps this valley because useless computation lengthens the critical path.
However, the gain from aborting useless computation is still slight.

It is quite plausible that the relative overhead of speculative computation in pand is too
large here since each conjunct task is quite short if the certainty of the associated premise is
already known (because the premise is one of the inputs of some other task that has already
traced all its applicable rules). To separate the intrinsic merit of speculative computation
from the overhead artifacts, we artificially reduced the relative overhead of pand by adding
delay loops to the four main procedures of the inferencing engine. Table 8.8 shows the
results, again on the Concert Multiprocessor with 32 processors, for different loop counts,
i.e. amount of artificial delay.

The results in Table 8.8 clearly show that the benefit of speculative computation in-
creases as the relative overhead of the pand decreases. This confirms our earlier hypothesis
about overhead defeating the advantage of speculative computation in this application (at
least with the gems dataset). The benefit of speculative computation is still not great, as
the figures in Table 8.9 indicate.

The speedup with speculative pand over mandatory pand seems asymptotic to about
15%, compared to speedups of 25% and 50% of mandatory pand over the sequential and.
Thus, raw parallelism, not the ordering and aborting of speculative computation is the
dominant performance factor here. After further investigation, we found that one reason
for this result is that many premises in the gems dataset share the same parameter values.
Because each parameter is only traced once (by the first task to get there), this means there
is a great deal of sharing of computation between the conjunct tasks of different pands. In
other words, there is a great deal of dependency between most pand invocations.

To investigate the influence of this factor, we created an artificial dataset without any
sharing between the premises. This dataset consisted of three hypotheses, each with a
uniform tree of anded premises - branch factor 3 - to a depth of 3 (for a total of 27 leaf
parameters). Each non-leaf premise had exactly one applicable rule. We created the answer
database randomly: we chose each non-leaf parameter from a distribution with probability

8.3. EMYCIN 171

Loop Version Inferencing time
CountAlmandine Peridot

Average Std. Dee. Average Std. Dee.

20 Sequential and 4.89 0.04 6.11 0.07
Neive pand 3.86 0.12 4.02 0.13
Mandatory pand 3.85 0.14 4.01 0.13
pand version 2 3.56 0.15 3.70 0.17
pand version 3 4.40 0.50 4.21 0.58

50 Sequential and 7.32 0.09 9.15 0.14
Naive pand 5.90 0.20 6.04 0.16
Mandatory pand 5.85 0.14 6.08 0.14
pand version 2 5.13 0.20 5.43 0.23

I pand version 3 6.35 0.91 6.44 0.88
100 Sequential and 11.46 0.15 14.12 0.16

Naive pand 9.24 0.29 9.41 0.25
Mandatory pand 9.13 0.24 9.42 0.53
pand version 2 7.97 0.33 8.28 0.41

1_ 1_pand version 3 10.1 2.6 9.74 1.17

All times in seconds. Statistics for 20 runs.

Table 8.8: Emycin inferencing times with artificial delay

Inputs Versions Speedup with loop count

S10 0 20 I 0 100
Almandine Mandatory pand/Sequential and 1.25 1.27 1.25 1.26

pand version 2/Mandatory pand 1.05 1.08 1.14 1.15
Peridot Mandatory pand/Sequential and 1.45 1.52 1.50 1.50

pand version 2/Mandatory pand 1.04 1.08 1.12 1.14

Table 8.9: Speedup of Emycin versions

172 CHAPTER 8. APPLICATIONS

Version Avg. Inferencing time
Sequential and 3.3
Naive pand 2.7
Mandatory pand 2.2
pand version 2 1.5

All times in seconds. Statistics for 5 runs.

Table 8.10: Emycin inferencing times with artificial dataset

0.1 for a false-valucd parameter. Table 8.10 shows the average execution time on the Encore
Multimax with 8 processors. Speculative pand (version 2) leads to about a 50% speedup
over mandatory pand here, without any artificial delays. This suggests that the sharing of
computation is indeed a significant factor in the performance of Emycin with speculative
ccmputation.

Despite the poor absolute performance with speculative computation, Emycin demon-
strates a number of important application features and a number of important issues. The
important features are:

1. Nested pands

Emycin is too complex to flatten the pands like we did with the pots in the tree-
equal application. This forced nesting of pands is completely transparent with our
support for spetculative computation. There is no concern, as with explicit termination
checking, about which parent pand a child checks for termination.

2. Side-effects

Emycin is a real example of the interaction of side-effects and speculative computation.
Our roll-forward approach to side-effects prevents speculative deadlock in a simple,
straightforward extension of our touching model.

3. Importance of aborting useless computation

The observed performance gains with speculative computation in Emycin, while small,
are entirely due to aborting useless computation.

4. Sharing of computation

With the gems dataset many conjunct tasks of different pands share the same compu-
tation. This feature really demonstrates the power of our touching model approach:
we can stay all the descendant tasks of a pand with the assurance that any shared
computation will not be irrevocably aborted. As long as the shared computation
has a sponsor it will not be stayed, and if it is stayed, it can be restarted simply by
touching it or giving it a sponsor. Outright aborting of all descendant tasks simply
will not work here. Explicit termination checking is also too difficult because of all

8.4. BOYER BENCIMARK 173

the pands that may be sharing a computation: somehow the computation must know
all the other computations which share it. Our support for speculative computation
automatically manages these concerns.

The important issues raised by Emycin are:

1. Overhead

The overhead introduced by the various management requirements of speculative com-
putation can defeat its advantage. Thus it is important, obviously, to reduce the
overhead. Less obviously, it is important to understand the limitations of speculative
computation.

2. Inter-group touching

The sharing of computation between conjunct tasks of different pands represents inter-
group touching: a conjunct task in one pand group touches a similar task in another
group.

8.4 Boyer Benchmark

This application has been popularized as a Lisp system benchmark (see [Gabr85)). Given
an input expression, the Boyer Benchmark determines whether the expression is a tautol-
ogy with respect to a database of rewrite rulea. The Benchmark successively reduces the
expression according to the rewrite rules to obtain an if-then-else tree. For example, the
expression (and (f x) (g x)) matches the rewrite rule

(and a b) -4 (if a (if b ft #f) #f)

and hence rewrites to (if (f x) (if (.g x) #t #f) #W). If rewriting does not produce
an if-then-else tree, the input expression is not a tautology. The Benchmark then walks
this if-thea-else tree checking for consistency. For each if-then-else expression it checks if
the predicate is known to be true or false. If so, it checks either the alternate or consequent
respectively. Otherwise, it first assumes that the predicate is true and recursively checks that
the consequent is true with respect to this assumption. Then it assumes that the predicate
is false and recursively checks that the alternate is true with respect to this assumption.

There are three main opportunities fir parallelism in the Boyer Benchmark:

1. applying the rewrite rules concurrently to separate subexpressions,

2. performing the tautology checking in parallel, concurrently checking the consequent
and alternate of each if expression whose predicate value is unknown (and so 3n
recursively), and

174 CIHAPTER 8. APPLICATIONS

3. performing the rewrite and tautology checking stages in parallel, exploiting their
producer-consumer relationship.

Exploiting these opportunities leads to two uses for speculative computation:

1. tautology failure

If one tautology checker task discovers a contradiction then the input expression is
false and all the remaining tautology checker and rewriter tasks may be aborted. Thus
we are essentially talking about the pand of all the tautology checker tasks.

2. not all rewrites necessary

Some rewrites may not be required to determine a tautology. For example, consider
the rewrite rule for and given above. If a happens to be #1, there is no need to rewrite
expression b.

The possibility of unnecessary rewrites means that:

(a) ordering is important
Unnecessary rewrites can use resources that might otherwise be devoted to nec-
essary rewrites and tautology checking and thus lengthen the execution time. We
would like to order the allocation of resources to tasks to always favor nec4sary
rewrites over unnecessary ones.

(b) useless rewrites can continue once tautology checking completes
We would like to abort all remaining tasks when tautology checking completes.
This is really an extension of the tautology failure case to tautology completion.

We focus on the ordering issue in this section. Ordering (at least with respect to
necessary versus unnecessary rewrites) is a key factor in the execution time of the Boyer
Benchmark. n By contrast, aborting all remaining tasks on tautology completion only
affects the computation (if any) in which the Benchmark is embedded. We have already
seen (in the section on per for example) how we can abort the remaining tasks: encloae
the Benchmark in a group and stay the group when tautology checking completes. Thus
nothing new is added by considering the remaining task issue.

We consider three versions of the Boyer benchmark in [Gabr85l (0,l written in MOWtil-
isp). The first version employs only conventional, mandatory tasks introduced with three
futures. One of these futures creates a task to perform the tautology checking of the con-
sequent and alternate in parallel. The code containing this future is called recursively to
initiate tautology checking on the entire if-then-else tree in parallel. The other two futures
create tasks to perform the rewriting - i.e. generation of the if-then-else tree - in parallel
with the tautology checking. The first of these two futures is called recursively to create
tasks to rewrite each subexpression. These tasks match the subexpressions with the rewrite
rules in the database. The second of these two futures is called recursively to perform

"If there are insufficient processors. This is usually a safe assumption for any non.trivial input expression.

8.4. BOYER BENCHMARK 175

the substitution indicated by the rewrite rule of any match. Thus both the producer (the
rewriting) and the conumer (the tautology checking) are parallelized internally as well as
with respect to each other.

The first version rewrites all expressions eagerly, ignoring the fact that some rewrites
may be unnecessary. Thus we call it the eager version.

The second version is exactly the same as the eager version except the two futures in
the rewriting code are replaced with delays. The eager version gambles that most rwrites
are necessary and does them before the checker actually needs them. This version instead
gambles that most rewrites are unnecessary and delays doing them at all until the checker
actually needs them. We call this the lazy version.

The eager and lazy versions represent two extremes in eagerness and ordering. The
eager version performs all rewrites eagerly in some arbitrary (implementation-dependent)
order. The lazy version performs dynamic ordering: it allocates resources only to those
rewrites which are demanded by the consumer, i.e. checker, and hence necessary. If the
fraction of unnecessary rewrites is small or there are abundant resources free (to be wasted)
relative to the number of rewrites, then the eager version is better. If on the other hand,
the fraction of unnecessary rewrites is large or there are few resources available relative to
the number of rewrites, then the lazy version is better.

The third version combines the best of the eager and lazy versions: eager evaluation
and dynamic ordering. This third version is exactly the same as the other two except
the futures/delays in the rewriting code are replaced with spec-futures. All these
spec-futures have the same (arbitrary) priority of 100. It is important only that the
priority be between 0 and MAX exclusive. Thus the speculative tasks created with these
spec-futures have priority intermediate between the tasks created with delay, which have
priority 0 (until touched), and the mandatory tasks created with future, which have pri-
ority equivalent to MAX. This means that rewriting proceeds eagerly unless there are no
available resources, in which case the dynamic ordering kicks in and only the necessary
rewrites are performed. Thus we expect better performance from this version than the
previous two in intermediate operating regions. We call this the speculative version.

We ran the three versions with the three variations of modus ponensin Table 8.11 (which
are all tautologies) as inputs.

The applicable rewrite rules for these inputs are:

1. (and a b) - (if a (if b #t #f) #f)

2. (implies a b) - (if a (if b #t #f) #t), and

3. (if (if a b c) d e) -- (if a (if b d e) (if c d e))

Table 8.12 shows the results for different number of processors on the Concert Multipro-
cessor. (The execution time is the time to determine if the input expression is a tautology,
i.e. the time to return.) In every case, except with one processor, the speculative version

176 CHAPTER 8. APPLICATIONS

Name a Input Expression
tc2 (implies (and (implies a b) (implies b C))

(implies a c))
(implies (and (and (implies (f x) (g x)) (implies (g x) (hi x)))

test-case (implies (h1 x) (i x)))
(:mplies (f x) (i x)))

(inplies (and (and (and (implies (f x) (g x)) (implies (g x) (h x)))
(implies (h x) (i x)))

test-caso2 (implits (i x) (x)))
(implies (f x) (j x)))

Table 8.11: Boyer test cases

Input J Version II Number of Processors

I _ _ 1I 2 1418 1161241 32
tc2 eager 40.0 19.1 10.3 5.6 3.4 3.0 3.0

lazy 19.9 10.9 8.8 8.0 7.9 8.0 8.2
speculative 21.5 ? ? 5.1 3.3 3.0 3.0

test-case eager 334 158 80.0 39.8 22.1 16.3 15.1
lazy 58.8 31.2 21.0 18.5 18.2 18.7 19.4

f speculative 63.8 ? ? 14.8 10.6 10.3 10.3
test-case2 eager 2780 1380 674 335 185 170 211

lazy 135 74.3 44.4 34.8 34.6 35.2 355.8
speculative 147 ? ? 130.2 28.1 27.8 30.6

All times ik, secondq. ? denotes times unavailable due to Concert failure.

Table 8.12: Execution time of Boyer Benchmark

8.4. BOYER BENCHMARK 177

is faster (and sometimes much faster) than the eager and lazy versions. The reason Is that
speculative version performs a large fraction of its unnecessary rewrites after it returns
whereas the eager version performs a large fraction of its unnecessary rewrites before it
returns.12 This difference is reflected in the number of garbage collection flips each version
performs before returning. With 32 processors the eager version had 0, 1, and 11 flips
respectively with tc2, test-case, and test-case2 whereas the speculative version had 0, 1,
and 2 flips, with the same respective inputs. Due to these flips, the execution time of the
eager version for 32 processors is highly variable. The lazy version performs no unnecessary
rewrites and had no flips with every combination of inputs and processors.

The execution time of the speculative version with test-case2 on 32 processors is notice-
ably anomalous with respect to the time with this input on fewer processors. The anomaly
is real: we repeated runs several times and obtained the same difference in execution times.
The difference is not due to garbage collection since for each combination of versions and
inputs the number of garbage collection flips was the same with 24 and 32 processors. Thus
the anomaly seems to be due to increased bus contention.

The one-processor case is interesting. With only one processor, the scheduling algorithm
always continues the mandatory child task crated by a future and queues the parent task
(since the machine is always saturated - see Section 10.2). Consequently the eager version
completely rewrites the input expression before performing any tautology checking and thus
is "maximally" eager with one processor. In contrast, the rewriting in both the lazy and
speculative versions is "maximally" lazy with one processor: no child task is pursued until
demanded by the onsumer. This accounts foi the difference between the -xecution time of
the eager and lazy/speculative versions. The difference in execution time of the lazy and
speculative versions with one processor is due to speculative task overhead.

With more than one processor, the eager version has an additional tendency to depth-
first rewriting like with one processor. In this case, the reason has to do with the scheduling
concerned with task touching rather than the scheduling concerned with task creation.
When a consumer task touches and blocks on a producer task, the scheduler continues the
next arbitrary task on task queue, not necessarily the producer task touched, if it was
queued. Consequently, consumer tasks can be blocked on producer tasks while producer
tasks continue to proliferate. Mohr reported that this phenomenon is strong enough to
ensure mostly depth-first rewriting even when task creation scheduling favors the parent
task rather than the child task [Mohr]. Mohr changed the scheduling concerned with task
touching, so the rcheduler continues the touchee task, if it was queued. With this new
blocking algorithm (which is undesirable in general), he found the execution time of the
eager verL.'on was virtually the same as that of the lazy version [Mohr]. Our speculative
version approximates this new blocking algorithm, when a consumer task touches a producer
Lask, the producer becomes a mandatory task and continues, even if it was queued before.

121n fact, the total computation time Is about the same In both cases. However, we actually stayed these

remaining tasks In the speculative vertion to redute the measurement cycle time. This staying took little
additional time.

178 CHAPTER 8. APPLICATIONS

Input Verzsion 11 Number of Procesors
I ~I 1 8 1 16 124 132,1

tc2 eager 1.9 1.1 1.0 1.0 1.0
lazy 0.9 1.6 2.4 2.7 2.7

test-case eager 5.2 2.7 2.1 1.6 1.5
lazy 0.9 1.3 1.7 1.8 1.9

test-case2 eager 19 11 6.6 6.1 6.9
lazy 0.9 1.1.2 1.2 1.2 1.2

Table 8.13: Ratio of eager and lazy execution times to speculative version execution time

In our own experiment, we found that the queue discipline matters little in the eager
version. We changed the queue ordering for mandatory tasks from LIFO to FIFO and
noticed no significant difference in execution times. Thus it is ability to dynamically reorder
tasks - queued or not - that is important to minimal execution times with the Boyer
Benchmark.

Table 8.13 makes the relative performance of the three versions clear. The speedup of the
speculative version with respect to the eager and lazy versions displays two trends (though
in opposite directions for each version). For the eager version, the speedup decreases as
the number of processors increases and increases as the input size increases. For the lazy
version, the speedup increases as the number of processors increases and decreases as the
input size increases. These trends confirm our expectations. For the eager version, as the
number of processors increases there are more 'surplus processors at every point in time
to perform unnecessary rewrites, thus reducing the relative effect of unnecessary rewrites.
As the number of processors increases without bound, the execution time for the eager
version should approach that for the speculative version. As the input size increases the
numbeir of unnecessary rewrites increases, thus increasing the relative execution time. Fo
the lazy version, as the number of processors increases there is insufficient parallelism -
due to the lazy evaluation of all rewrites - to utilize all processors, thus increasing the
relative execution time. As the input size increases, there is more necessary work available
to utilize the processors. For large inputs, the execution time for the lazy version should
approach that for the speculative version.

Table 8.14 shows exactly how the number of rewrites varies with the inputs. The total
number of rewrites in this table is the total number of rewrites performed by the eager
version on a single processor. Thus it is the maximum number of rewrites. The number
of necessary rewrites in this table is the total number of rewrites performed by the lazy
version (on any number of processors). Thus it is the minimum number of rewrites. The
ratio of the total number of rewrites to the number of necessary rewrites thus yields an
upper bound on the speedup of the lazy version over the eager version. The actual speedup
with one processor is about 0.7 of that predicted by this ratio.

8.4. BOYER BENCHMARK 179

DataSet Total INumber I Percent
_1 Rewrites Necessary Necessary

tc2 1213 397 32.7
test-case 11280 1405 12.5
test-case2 91868 3371 3.7t

Table 8.14: Rewrite statistics for the three input test cases

Another way of looking at the results in Table 8.12 is as follows:

" The eager version Ls better than the lazy version if the processors are not saturated
with mandatory computation, as with many processors or a small input. Then the
eager version exploits the extra processors to perform the rewrites speculatively and
reduce the execution time.

" The lazy version is better than the eager version if the processors are saturated with
mandatory computation, as with few processors or a large input. Then the lazy version
prevents mandatory computation from being crowded out by speculative computation.

" The speculative version is the same or better than the eager and lazy versions for all
conditions (except on one processor). It prevents mandatory computation from being
crowded out by speculative computation while still utilizing the extra concurrency
of the speculative computation. That is, it dynamically adjusts the tradeoff between
concurrency and crowd-out of mandatory computation.

These results indicate the importance of ordering speculative computation. (To reiter-
ate, this application has only 2 spec-futures, and performs no aborting.) The key feature
of spec-future here is that it creates a second-class type of task that only runs if there
are free processors. That is, spec-futulre is neither fully lazy nor fully eager; it adapts
dynamically to the load. This frees the user from scheduling concerns as the machine and
input size vary.

Ideally, we would like to use the relat.ve promise of rewrites better in this application.
The above three versions assume that all rewrites have equal promise: the eager version
assumes all are required, the lazy version assumes none are required, and the speculative
version assumes all are required with the same likelihood. We would like to identify nec-
essary rewrites a priori so we can avoid doing any unnecessary rewrites. Unfortunately,
this is hard to do. Instead, we experimented with imposing an order on all rewrites. We
chose an ordering that gave rewrites a priority proporional to their distance from the left-
most spine of the if-then-else tree (measured by the depth of recursion). This seemed a
reasonable a priori ordering. However, the results were no different than with our original
speculative version. The impact of this ordering was totally overwhelmed by the impact of
the mandatory versus speculative classification. This result underscores that the demand-

180 CHAPTER 8. APPLICATIONS

driven, dynamic ordering by the consumer, i.e. tautology checker, is the important feature
in this application.

The speculative version that we presented is not fully general: it may not be er' idtd
within a large computation without risking two problems. The first problem is possl'.ln
priority inversion. The most important aspect of the speculative version is that consumers,
i.e. tautology checkers, run at a higher priority than producers, i.e. rewriters. However,
because of our choice of an absolute priority p (which happens to be 100 here) for the
producers, this desired priority relationship will be inverted if the speculative version is
invoked by a speculative task with priority less than p. The consumer tasks will all be
speculative tasks with priority lets than p inherited from their parent, rather than greater
than p as we desire. We could choose a different value of p, but what value? The invoker
could have any priority, which we should not have to know for abstraction reasons (or be
able to know). We could choose p = 1 (so almost all invokers have priority > p) but this
is not a general solution. we could have some local ordering on producers that we want to
maintain. To solve this problem we need a local ordering space for the Benchmark, i.e. we
need modularity.

The second problem is that eager tasks - tasks not yet demanded - are not restarted
if the speculative version is stayed and then restarted by touching the root, consumer task.
This problem is not fatal, es such tasks will be re-started when they are demanded, but
it could impact performance since the speculative version essentially changes into the lazy
version. To mitigate this problem, we need group coherency. Ideally, we want to associate
a controller sponsor with the Benchmark so we could sponsor all the Benchmark tasks with
the demand for the r3ot consumer task.

Comment

The Boyer Benchmark in [Gabr85] is a stupid program (like most benchmark codes). Its
performance can be improved dramatically (from a factor of 2 for tc2 to a factor of 50 for
test-case2) by making the following two optimizations:

1. Add two rewrite rules to the database:

(if #t a b) - a and (if #f a b) - b

These two rules primarily reduce the size of the if-then-else tree, speeding both rewrit-
ing (since it does not have to construct such a large tree) and tautology checking (since
it has a smaller tree to check). These rules also eliminate useless rewriting of b and a
respectively. (A further improvement, which we did not try, is to change the rewrite
rule for and to (and a b) -- (if a b #f).)

2. Eliminate the multiple rewriting of common subexpressions.

In the case of the rewrite rule (if (if a b c) d e) --+ (if a (if b d e) (if c d e))
the benchma:k brainlessly rewrites subexpressions d and e twice; once for each occur-
rence in the rewritten expression. Eliminating multiple rewriting reduces the number

8.5. THE TRAVELING SALESAfN PROBLEM 181

of rc,'rites in such cases by a factor of 2. It also reduces the number of unnecessary
rewrites.

Together, these optimizations reduce the total number of rewrites for te -.case2 from
91868 to 622 and the nmber of necessary rewrites from 3371 to 554. '.1 percent of
the rewrites are unnecessary so there is still potential for the ordering introduced with
spec-iutures to reduce the execution time. However, since the execution time is so smal
the input size must be increased to notice a significant impact.

8.5 The Traveling Salesman Problem

This application is the solution of the trareling salesman problem by straightforward branch
and bound algoritha. It is a clear-cut example of ordering-based speculative computation.

We describe two different versions: qtrav and stray. Both versions are substantially the
same in concept. However, qtrav uses only the conventional (i.e. mandatory) constructs of
Multilisp. We describe qtrav here and describe later how stray differs.

The input is a list of cities described by two-0;- -.nsional coordinate pairs. The result is
the cost and itinerary of the best (shortest) tour of all cities, where a tour is a directed cycle
of cities containing no city more than once. qtrav fin:s the best solution by successively
expanding nodes in a branch-and-bound manner. Each node represents a partial solution
consisting of a tour, the tour cost, and a list of cities excluded from the tour. The initial
node represents an initial tour of three cities. qtrav expands each eligible node into new
(child) nodes by choosing the next city from the node's excluded list and inserting it in all
the possible places in the tour. Only nodes with a tour cost less than the cost of the best
complete tour so far are eligible. Ineligible nodes are pruned, i.e. discarded.

Figure 8.18 shows a program fragment from qtrav for expanding a candidate node.

The variable next-city (line 4), which has alre.-Ay been sct by the original caller of
expand-candidate, gives the current city to try from the excluded list. The argument
before is a list of the cities in the new tour before next-city and the argument after
is a list of cities in the new tour after next- . ..xy. Line 1 calculates the cost of the new
tour and line 2 checks that the new tour is elizibie. It so, line 3 spawns a task to try other
permutations of cities before and after next-city and the present task continues expanding
the new tour into a node. Line 4 forms a list representing the new tour. If nc excluded
cities remain (line 5), the new tour is a complete tour and line 6 atomically updates the
cost of the best solution if the solution is cheaper. Finally, line 7 creates the new node. If
the new tour was ineligible in line 2, the present task goes on to try other permutations in
line 8.

qtrav chooses nodes to expand in minimum heuristic cost order. This heuristic cost is
the average cost per city, i.e. the tour cost divided by the number of cities in the tour. The
intention is to bias node expansion towards the most promising tours (as defined by this

182 CHAPTER 8. APPLICATIONS

(define (expand-candidate before 'ter)
(if (null after)

nil

(let ((new-cost <calculate cost of), w llur>));1

(if (< new-cost (caar best-soln)) ;2
'%let ((rest-candidates

(future (expand-candidate ;3
(cons (car aftrr) befoi. *'

(cdr after))))
(new-tour

(future (append (reve3 . 4
(cons next-ciL.,~ aft*r)))))

(if (null (cdr excluded-cities)) ;
(begin

(update-best-soln (cons ... "cost .,,vo-tour)) 8
rest-candidates)

(cons (list UI new-cost num-c..ties-uss0 ~ 7
num-cities-used
new-cost
new-tour
(cdr excluded-cities))

rest-c and~dates)))
(expand-candidate (cons (car after) before) ;8

(cdr after)))

Figure 8.18: Expanding a candidate node in qtr-.v

8.5. TIE TRAVELING SALESMAN PROBLEM 183

heuriatic cost) in an attempt tc% get good solutions rapidly. The faster we can find a tight
bound on the best solution, the more we can prune the search space and thus the faster we
can complete the search.

To enforce the heuristic cost order, qtrav maintains the nodes in a central priority queue
according to their average cost per city. This priority queue is implemented by Multilisp
coae. (There is no support for priority queues built into conventional Multilisp.)

qtrav employs a number of worker tasks to perform this overall strategy of greedy,
minimum (heuristic) cost expansion. Each worker performs a cycle of the following two
steps while nodes are available:

1. Pull the minimum (heuristic) cost node off the priority queue

2. Expand the node, pruning out inferior child nodes, and enqueue the remaining child
nodes on the priority queue.

To avoid creating an excessive number of nodes, qtrav uses only one worker until it finds
the first complete tour. Then, once it has a bound to prune inferior nodes, it starts the other
workers. Each worker is itself a parallel task - the children of a node can be expanded
in parallel as in Figure 8.18 -- and thus qtrav exploits parallelism even during this first
stage with a single worker. ('Ihe priority queue insertion and deletion routines also exploit
parallelism.) However, this parallelism within a worker task presents a problem: how do
we determine the number of worker tasks for the optimum tradeoff between inter-worker
parallelism and int-a-worker parallelism?

stray performs the same .,ranch-and-bcund algorithm with the same greedy, minimum
(heuristic) cost node expansion stratey as qtrav. However, stray does not use an explicit
priority queue to order node expansion. Instead, strav relies on the ordering mechanism
for speculative tasks. stray c-eates a speculative task for each node expansion, with the
priority negatively proportional to the heuristic cost. The underlying support for ordering
speculative tasks (i.e. the distributed priority task queues described in Chapter 10) thus
ensures that nodes representing good tours ar.3 favored for expansion over nodes representing
bad tours. The actual expansion of a node occurs in the same way as for qtrav. Figure 8.19
shows the version of expand-candidates for stray. This coda is executed by a speculative
task. Before getting to this code, the speculative task checks if the parent node should be
pruned. If so, the task simply terminats. Once in this code, the speculative task checks
each candidate child for pruning (in linc 1) before representing the child by a node (line
4) and spawning a sp.cuhive task (in line 5) to expand the node. The cost->priority
function in line 6 prcduces a priority for this speculative task that is negatively proportional
(i.e. linearly decreasing) to the child node's heuristic cost. Note that stray uses parallelism
in node expansion (lines 2 and 3) just like qtrav.

To get a good first solution as rapidly as possible, strav expands the minimum cost
chil' node a.s a mandatory task until it obtains a complete tour. To experiment with the
expansion of other nodes (as speculative tasks) during this period, we added a parameter
first to strav. With first set to non-nil, the expansion of all nodes other than the

184 CHAPTER 8. APPLICATIONS

(define (expand-candidate before after)

(if (null after)

nil

(let ((new-cost <calculate coat of new tour>))

(if (< new-cost (caar best-soln)) 1

(let* ((rest-candidates
(future (expand-candidate ; 2

(cons (car after) before)

(cdr after))))

(new-tour

(future (append (reverse before) ; 3

(cons next-city after))))

(new-cand (list (new-cost num-cities-used) ; 4

num-cities-used
new-cost

new-tour
(cdr excluded-cities))))

(cons (spec-future (search new-cand) ; 5
(cost->priority (car new-cand))) ; 6

rest-candidates))
(expand-candidate (cons (car after) before)

(cdr after))))))

Figure 8.19: Expanding a candidate node in stray

There are a number of optimizations we could make to this code, such as replacing cons in
line 5 by and (we just care about termination). We chose the present version since it clearly
illustrates the essential differences between qtrav and strav.

8.5. THE TRAVELING SALESMAN PROBLEM 185

minimum cost node is inhibited until the first complete tour is found. With first set to

nil, the expansion of these nodes proceeds in parallel with the minimum cost expansion,
according to the heuristic cost ordering.

An interesting problem with stray is termination: how do we know we have expanded

all eligible nodes and thus can return? With qtrav, termination is trivial: return when the

global priority queue of eligible nodes empties. We cannot do the same with stray since
the priority task queues may contain speculative tasks from activities in addition to those
from stray. One solution is to maintain a count of the number of eligible nodes remaining

unexpanded and terminate when this count becomes zero. Another solution is to touch each
node expansion task generated and terminate when all these tasks have returned a value. We
chose this second solution since it fits the Multilisp paradigm better. With tree structured
task creation, like in stray, termination detection by touching is natural and simple: each
parent task touches all its child tasks. However, this solution means that the desired node
expansion ordering, which is expressed by the source priority of the tasks, may be distorted:
the touchee's priority is the maximum of the toucher's priority and the source priority. We
want to prevent this distortion. We can do so, %% hile still retaining termination detection by

touching, by either disabling the max combining-rule or disabling touch propagation. We
have no direct way to disable the max combining-rule, though we could effectively disable it
by ensuring that the toucher priority is always less than the touchee priority. We save this
alternative foi the Section 8.6. Instead we disable touch propagation by breaking the touch
propagation p.th with placeholders. We replaced the spec-future in line 5 of Figure 8.19
by the syntactic form const-spec-future. (const-spec-iuture exp priority) expands
to

(let ((a (mako-future)))
(spec-iuture (determine-future o exp) priority)
a)

where a is an unique identifier. Now instead of touching the spec-future, we touch the
placeholder which does not propagate the touch on to the spec-future. (However, this
solution leads to another problem which we discuss later.)

Table 8.15 shows the execution time of qtrav and stray on the Concert Multiprocessor
for three city lists, a16, a18, and a20, of 16, 18, and 20 cities respectively. The number of
workers in the second column pertains only to qtrav. As indicated at the foot of this table,

the IL er "f" in the columns for stray denotes the parameter first. The graph in Figure
8.20 captures the general trends in these results. For each combination of city list and
number of processors in this graph, the qtrav results shown are for the optimum number of
workers for that combination of parameters.

From Figure 8.20 we observe that

1. stray is always faster than qtrav (except for a20 with 8 processors: qtrav with 8
workers is slightly faster than stray with first= nil). The difference in execution
times increases as the number of cities and number of processes increases. In fact,

186 CHAPTER 8. APPLICATIONS

City Lists
Number of Number of a16 a18 a20
processors workers qtrav stray qtrav strav qtrav stray

(for qtrav) - f-nil1 fj # t . f=nil f-#t f=nil f=#t
8 - 2 30.1 13.0 10.6 145.8 52.0 47.5 244.8 105.9 93.4

4 17.8 81.0 135.4
6 15.2 66.0 108.3
8 14.6 63.8 104.4

16 4 29.9 8.2 6.5 78.0 28.8 26.5 130.9 55.3 49.2
8 12.1 47.5 77.8
12 11.3 42.8 67.9
16 11.5 42.9 68.3

24 8 12.3 7.3 5.6 47.9 22.4 21.0 78.1 40.9 36.3
12 11.3 41.4 66.0
16 11.6 40.5 63.8
20 11.7 41.2 64.6
24 11.8 41.8 66.0

32 8 12.8 7.0 5.4 50.0 19.8 19.0 81.5 36.8 33.3
12 11.8 43.3 68.4
16 12.0 42.3 66.4
20 12.1 43.0 66.7
24 12.2 43.9 68.7
32 12.6 44.6 71.1 1

Table 8.15: Execution time of Traveling Salesman Problem on the Concert Multiprocessor

All times are averages in seconds. f denotes the parameter f irst in stray.

8.5. THE TRAVELING SALESMAN PROBLEM 187

lz 110-
0)-)K qtrav (optimal # workers)

CS 10 -2 -- -oa strav, first--nil

iE 90-X

80-

70-

60-
a18

50-

40-

30--.

20 -:3

10 a16

0 I
0 8 16 24 32

Number of Processors

Figure 8.20: Execution time of 'ikaveling Salesman Problem on the Concert Multiprocessor

188 CHAPTER 8. APPLICATIONS

strav continues to speed up as the number of processors increases to 32, whereas qtrav
encounters a distinct knee around 24 processors and actually slows down (for a18 and
a20) as the number of processors increases from 24 to 32. This behavior of qtrav is
undoubtedly due to contention accessing the global priority queue.

2. stray is always faster with firat= &.t than with first= nil. We expected the op-
posite result. With first= nil we reasoned that stray would bcgin exploring some
possibly useful routes with the free processors available until the first complete tour
was found. With perfect preemption (zero time to notice a preemption condition and
perform the preemption), this exploration of other routes should not interfere with the
search for the first complete tour, which executes as a mandatory task. However, the
benefit of precomputing these routes must be balanced with the cost imposed by gen-
erating superfluous nodes - nodes that would not have been generated if a pruning
solution (from a complete tour) existed. Each superfluous node must be investigate.d
later, compounding the cost. Obviously, this effect and non-perfect preemption must
overwhelm the expected advantage of first= nil.

The fact that stray is always faster than qtrav is not surprising given that stray es-
sentially pushes the priority queue overhead down one layer of interpretation, from the
language level to the implementation. We gain more than speed by this in stray. What we
have really done with stray is move a good deal of resource management (the management
of task ordering in this case) from the user level to the implementation. Automating this
resource management makes it easier to exploit resources in three ways:

1. We do not have to write (or even think about) the priority queue code. Instead, we
can use the more efficient implementation code to perform task ordering.

2. We are insulated from concerns over the machine size. The implementation automati-
cally distributes the priority queues to avoid ex.cessive contention with a large number
of processors.

3. We do not have to worry about appropriate parameter values, such as the number
of workers. The underlying scheduling mechanism automatically determines the opti-
mum tradeoff between inter-node and intra-node (expansion) parallelism. Table 8.15
would seem to indicate that this tradeoff is relatively unimportant for qtrav since the
execution time is fairly flat around the optimum number of workers. However, we
did not know this in advance and we certainly did not know the optimum number of
workers in advance, so we still had to fiddle with various values.

Consequently, stray is easier to program and understand than qtrav.

Both versions of the branch-and-bound solution presented here for the traveling salesman
problem demonstrate order-based speculative computation, in which the only speculation
is in the ordering of computation and there is no explicit aborting of computation, so this
application once again illustrates the importance of ordering. The only issue here is how
to achieve the desired ordering. qtrav achieves this ordering by direct intervention by the

8.6. EIGHT-PUZZLE GAME 189

2 83

16 4
7 5

Table 8.16: The Eight-puzzle: a starting position

user. stray achieves this ordering by exploiting the priority scheduling mechanism of our
support for speculative computation. This support provides two benefits for stray:

1. more efficient priority scheduling, and

2. easier exploitation of system resources.

As described above, these benefits lead to greater ease of programming and understanding.

There are two problems with stray, however. First, if it is stayed, as part of a larger
computation, it cannot be restarted when touched since we broke the touch propagation
paths. Touching a stayed stray will result in deadlock. We could solve this problem by
making all the tasks members of some class sponsored by the tasks demanding the stray
result. We omitted this fix for simplicity. In general, we would like a controller sponor
to solve this problem so that the original priority ordering can be preserved. Second,
stray uses absolute priorities so the priorities cannot be rescaled if stray is part of a larger
computation whose priority changes (such as if stayed), i.e. stray lacks modularity. We need
to add modularity to our touching model to solve this problem.

8.6 Eight-puzzle Game

This application is basically a tree-structured per. like tree-equal, but with ordering. Con-
sequently, the characteristics of the application are a cross between the characteristics of
tree-equal and travsales.

The Eight-puzzle game has eight square tiles numbered 1 to 8 respectively arranged
in some fashion on a three-by-three square game board, as in Figure 8.16. The tiles slide
in the horizontal and vertical grids established by the board and cannot be removed from
the board. Any tile adjacent to the one empty square can slide into that square. This
constitutes a move. The object of the game is to arrange the numbered tiles in clockwise
order around the perimeter of the board with the empty square in the center, as in Figure
8.17.

The application in this case is to solve the Eight-puzzle game: given a starting board,
search th-2 move tree to the given depth for the first path to the solution. (We are interested

190 CHAPTER 8. APPLICATIONS

87 6

Table 8.17: Eight-puzzle solution

(define (seq-solve starting-board search-depth)
(solve-puzzle nil

search-depth
(cons starting-board (find-blank-tile starting-board))))

(define (solve-puzzle boards-seen depth board+blank)
(let ((board (car board+blank))

(blank (cdr board~blank)))
(if (compare-boards board solution) ;1

boards-seen
(if (or (<- depth 0) (seen-board-before? board boards-seen)) :2

nil
(mapcar (lambda (bb) ;3

(solve-puzzle (cons board boards-seen)
(- depth 1)
bb))

(successors board blank)))))) ;4

Figurc 8.21: Sequential version of Eight-puzzle

in only the first path to the solution, not all paths and not the shortest path.) The code
for this application is a Multilisp translation of the Id code in [Soley]. We consider four
versions of thq code - one sequential version and three parallel versions. Figure 8.21 shows
the key part of the sequential version.

seq-solve takes a starting board (represented as an array) and a search depth, and
calls solve-puzzle to start the game tree search. solve-puzzle takes three arguments: a
'st of the candidate boards examined so far, the current depth remaining to search in the
tree, and a pair containing the current board and the position of the blank tile, i.e. empty
square, in this current board. (All squares are numbered.) Line 1 checks if the current
board is the solution board denoted by the variable solution. If not, line 2 checks both
that the search depth is not exceeded and that the current board has not already been
examined (this prevents cycles). Finally, line 3 calls solve-puzzle recursively on all the

8.6. EIGHT-PUZZLE GAME 191

sacc:essors of the current board. Line 4 generates these successors by trying all ways to
swap the blank tile with a neighboring tile.

The first parallel version uses mandatory tasks. This mandatory version, shown in
Figure 8.22, is basically the parallel or of the search tree branches. This code should be
familiar from the mandatory version of por in Figure 8.1 (and the eager version of tree-equal
in Figure 8.6). Line 1 initializes a lock cell for race officiating synchronization and line 2
initializes the result placeholder. As in Figure 8.1, line 6 spawns the tree search with a
dfuture to remove task creation from the critical path of returning a result. solve-puzzle
is the same as in the seq-zential version except for three changes - race officiating in line 3,
task creation to examine the successor boards in line 4, and termination detection in line
5. touchlist performs termination detection by touching each child task. Note that child
tasks are added to the "per" dynamically in line 4, so this is an another example of por
with a dynamic number of disjuncts, the second generalization of por mentioned in Section
8.1.8.

The second parallel version uses specula.tive tasks. This version, which we call the spec
version, differs from the mandatory version in only three lines. Figure 8.23 shows the
code for the spec version with these three lines numbered. This spec version is much like
version 1 of speculative per in Figure 8.2 except for centralized termination detection with
touchlist. All the speculative tasks in the spec version have the same priority (*max-pri*
in this case). This version cannot be restarted if stayed. We discuss this problem later.

The final parallel version is a refinement of the spec version with ordering, i.e. different
task priorities. The task priorities in this version, which we call the spec2 version, are set
to implement the the heuristic ordering of board examination suggested in [Nilsson]. Each
board b has a heuristic cost C(b) given by D(b) + W(b) where D(b) is the depth of board
b in the search tree and W(b) is the number of (numbered) tiles misplaced with respect to
the solution board. For example, W(h) = 4 for the board in Figure 8.16. Boards should be
examined in order of increasing heuristic cost.

To approximate this heuristic ordering, the spec2 version spawns a speculative task to
examine each board b, as in the spec version, with priority *max-pri*-C(b). Thus the
spec2 version uses the built-in (distributed) priority queues to achieve a desired ordering,
like the stray version in Section 8.5. The spec2 version aborts all remaining computation
as soon as it finds a solution. Thus the spec2 version is also like the per and treeequal
applications. spec2 is an example of simultaneous multiple-approach and ordering-based
speculative computation.

Like per, the spec2 version must perform termination detection since it may not find any
solution within the given search depth. The most natural way to do this in Multilisp is by
touching the descendant tasks. However, this gives rise to the same problem with touching
termination detection as we discussed with stray in Section 8.5: how can we touch a task
for termination detection without changing the touchee's priority (by the max combining-
rule), hence distorting the desired ordering? We described one way in Section 8.5 to solve
this problem by disabling touch propagation. Here, we describe another way to solve this
problem by disabling the max combining-rule. The idea is simple: we simply force the

192 CHAPTER 8. APPLICATIONS

(define (mand-solve starting-board search-depth)
(let ((lock (cons '*undetermined* nil))

(result (make-future))) ;2

(defi-ne (solve-puzzle boards-seen depth board+blank)
(lot ((board (car board+blank))

(blank (cdr board+blank)))
(if (compare-boards board solution)

(if (rplaca-eq lock '*determined* '*undetermined*) ;3
(determine-future result boards-seen))

(if (or (<- depth 0) (seen-board-before? board boards-seen))
nil
(let ((children

(mapcar (lambda (bb)
(future ;4

(solve-puzzle (cons board boards-seen)
(- depth 1)

bb)))
(successors board blank))))

(touchlist children) ;6
nil)))))

(dfuture (begin ;6
(solve-puzzle
nil
search-depth
(cons starting-board (find-blank-tile starting-board)))

(if (eq (car lock) '*undetermined*) ;7
(determine-future result nil))))

result))

Figure 8.22: Mandatory version of Eight-puzzle

8.6. EIGHT-PUZZLE GAME 193

(define (spec-solve starting-board soarch-depth)
(let ((lock (cons '*undetermined* nil))

(result (make-future)))

(define (solve-puzzle boards-seen depth board+blank)
(let ((board (car board+blank))

(blank (cdr board+blank)))
(if (compare-boards board solution)

(if (rplaca-eq-mand lock '*determined* '*undetermined*)
(begin
(determine-future result boards-seen)
(stay-group (group-id (my-group-obj)))))

(if (or (<- depth 0) (seen-board-before? board boards-zen))
nil
(let ((children

(mapcar (lambda (bb)
(spec-future ;2

(solve-puzzle
(cons board boards-seen)
(- depth 1)

bb)
max-pri))

(successors board blank))))
(touchlist children)
nil)))))

(make-group (begin ;3
(solve-puzzle
nil
search-depth
(cons starting-board (find-blank-tile starting-board)))

(if (eq (car lock) '*undetermined*)
(determine-future result nil)))

max-pri)

result))

Figure 8.23: Speculative (spec) version of Eight-puzzle

194 CHAPTER 8. APPLICATIONS

2 1 6
4 3

Table 8.18: boardI8

toucher task to have the minimum running priority, *min-pri*, before it touches tasks to
check for termination. Thus the touchc priorities will not be affected, unless they are less
than *min-pri* (which is 1), in which case the touchee tasks will go from being stayed
(priority 0) to being unstayed. If the touchee tasks are stayed, they must be unstayed
anyway so that spec2 terminates. The following two lines from spec2 demonstrate this
solution.

(change-priority (my-future) *in-pri*)
(touchlist children)

The first line reducz fihe priority of the executing task to *min-pri*. The second lin-
touches all the chilaren tasks, as in line 5 of Figure 8.22, checking for termination.

We could refine tha mandatory version to utilize the same orde ig as the spec2 version.
To enforce this ordering, this refined mandatory version would use an explicit priority queue
written in Multilisp, as in the qtrav version in Section 8.5 (since there is no built-in support
for priority queues in conventional Multilisp). Since the qtrav version is already an excellent
example of the explicit queue approach, we do not consider the refined mandatory version
further.

We ran the four versions with two different starting boards: boardS, for which the
shortest solution is five moves away, and boardl8 (from [Nilsson]), for which the shortest
solution is 18 moves away. Figure 8.16 shows board5 and Figure 8.18 shows board18.

Table 8.19 shows the execution time on the Encore Multimax with 8 processors for these
four versions and two starting boards.

For small search depths (depth = 4 for board5 and depth _ 10 for board18), the spec
version is just slightly slower (than the mandatory version) whereas the spec2 version is
about 1.3 times slower (cf. depth = 4 for board5 and depth = 10 for board18). For boardS,
the execution Lime of the mandatory and spec versions is erratic at greater depths because
of random fluctuations in the ordering of board expansions. In contrast, the execution time
of the spec2 version is consistent, due to control over the ordering, and usually smaller.
Note that the speedup of the mandatory and spec versions in many cases, and the spec2
version especially, with respect to the sequential version is greater than eight, the number
of processors. This superlinear speedup is a typical characteristic of multiple-approach
speculative computation, as we saw in Section 8.2: the speedup depends on the position of

8.6. EIGHT-PUZZLE GAME 195

Start, Search Search version
board depth Sequential Mandatory .Spa t j_... 1

boards 4 1.72 0.43 0.4 1 0.0I7
5 3.27 0.60 0.50 - C.7'5 ., 0
6 6.30 0.77- 0.90 0.48 - 1.1-2 O60
8 20.7 1.1 - 2.2 1.3- 2.8 0.60

board18 5 3.67 0.77 0.83 0.80
10 77 11.1 11.7 14.5
15 23 min. 192 crash crash
20 ? 23 min. crash 54

All times in seconds, unless otherwise indicated.

Table 8.19: Eight-puzzle execution time

the solution in. the "subtrees" and the order in which these subtrees are searched.

For board18, the execution time of the spec2 version is far superior to that of the other
versions, provided that the search depth is sufficient to include a solution (i.e. >_ 18). For a
search depth of 20, the sequential version took longer than we cared to measure and the spec
version exhausted the heap (12MB on the Multimax) and crashed.. The spec2 version, which
did not exhaust the heap, was 26 times faster than the mandatory versionl Thus careful
control of the ordering reduced both the execution time and the memory requirements.
There are two reasons why the mandatory version did not also exhaust the heap. The first
reason is that mandatory tasks require considerably less storage than speculative tasks, as
described in Chapter 10. The second reason is the unfair scheduling of mandatory tasks (see
Section 1.4.2). As described in Section 10.2, once the machine saturates with mandatory
tasks the child task created with future continues while the parent is inserted in a LIFO
queue of runnable mandatory tasks. With the code for the mandatory version in Figure
8.22, this unfair scheduling will encourage a depth-first examination of the search space. In
contrast, spec -future continues whichever of the parent and child has the higher priority
(the parent in case of a tie) and inserts the other in a priority queue of runnable tasks.
With the code for the spec version in Figure 8.23, all the speculative tasks have the same
priority and thus spec-future will continue the parent task and process the runnable tasks
in FIFO order. This scheduling will encourage a breadth-first examination of the search
space which requires much more storage than a depth-first examination. The priorities in
the spec2 version encourage a "directed" breadth-first search, focusing the breadth on the
most promising search paths.

If the search depth is insufficient to include a solution, the spec2 version is only 1.3
times slower than the mandatory version for a depth of 10. For a depth of 15, the spec2
version exhausted the heap and crashed so we cannot say. The same two reasons as above
account for why the spec2 version crashed in this case and the mandatory version did not.

196 CHAPTER 8. APPLICATIONS

This Eight-puzzle application demonstrates once agaiu the importance of ordering (for
execution timt.) and the expressive power gained by our support for speculative computa-
tion. As in Section 8.5, built-in support for ordering (in the form of priority queues) makes
programming easier and improves efficiency by eliminating the layer of interpretation asso-
ciated with explicit ordering (i.e. priority queues) at the language level.

This application also demonstrates the importance of ordering for controlling resource,
i.e. memory, usage. The ordering for minimum resource use is not the necessarily the same
as the ordering for minimum execution time, as demonstrated by the contrast between the
mandatory and spec2 versions for a search depth of 15. For minimum execution time we
want a breadth-first expansion of the P highest priority boards (where P is the number of
processors) and for minimum memory use we want depth-first expansion of the boards on a
single processor. In this fundamental tradeoff between execution time and memory use, we
have focused on execution time and ignored memory use. This is a weakness of our work
that must be addressed in the future.

The speculative version in Figure 8.23 has two problems. The first problem is that the
speculative version cannot be restarted if it is stayed as part of a larger computation. Touch-
ing the result placeholder fails to restart all the descendant tasks spawned by make-group
in line 3 since there is no demand continuity from this placeholder to the tasks. This is
precisely the group incoherency problem discussed in Section 8.1.4. We can fix this problem
in the same way as we did in Section 8.1.5: we can have the tasks blocked on the result
placholder sponsor a class containing the make-group task. (We omitted this fix for sim-
plicity.) Then, since we did not break the touch propagatior paths to perform termination
detection, as we did with stray in Section 8.5, the termination detection touch will ensure
that all tasks are eventually restarted. However, these tasks will only be restarted lazily,
when actually touched. Hence, we would prefer a controller sponsor to solve this group
incoherency problem. The second problem is really a generalization of the first problem:
the speculative version uses absolute priorities so the priorities cannot be rescaled if it is
part of a larger computation whose priority changes (such as being stayed). This problem
results from a lack of modularity. It can be solved with a suitable mechanism for modularity
which provides for local ordering relative to the group enclosing all the search tasks.

8.7 Summary

The applications in this chapter demonstrate three things: examples of speculative com-
putation, benefits of speculative computation, and issues of speculative computation. We
summarize each in turn.

8.7.1 Examples

Table 8.20 lists the inherent characteristics of each application. The applications cover all
the different classifications of speculative computation mentioned in Section 1.1 except for

8.7. SUMMARY 197

,Application Characteristics

por/pand nondeterministic, multiple-approach speculative computa-
tion

Tree equal application of pand

Emycin nested pand, hence nested speculative computation
side-cffects
sharing of computation

Boyer ordering-based speculative computation

producer-consumer relationship

Travsales ordering
Eight puzzle pand and ordering

Table 8.20: Characteristics of each application

precomputing speculative computation, which is not supported (very well) in our present
implementation. Table 8.21 lists the contributions of each application.

8.7.2 Benefits

These applications demonstrate two different types of benefits of speculative computation.
The first benefit is performance gain. Emycin demonstrates performance gains duo to abort-
ing useless computation and Boyer and Eight-puzzle demonstrate significant performance
gains (a factor of about 2 with Boyer on 16 processors and a factor of 26 with Eight-puzzle
on 8 processors) due to ordering speculative computation.

The second benefit is really the benefit of our support for speculative computation
rather than the intrinsic benefit of speculative computation. Travsales and Eight-puzzle
demonstrate how our support for speculative computation shields the user from resource
management concerns and thus makes it easier tu exploit machine resources. Tree equal
demonstrates how our automatic naming of descendants makes aborting easier by solving
the nesting and unknown function call problems. Emycin demonstrates how reversible
"aborting" (a.k.a. staying) solves the problems with sharing of computation and side-effects.
Finally, Boyer demonstrates how our touching model provides natural dynamic ordering to
control producer/consumer scheduling, freeing the user from this burden.

8.7.3 Issues

Since we have covered the basic issues in speculative computation, like task scheduling,
extensively in other chapters, we concentrate here on the issues these applications raise in
our present implementation.

198 CHAPTER 8. APPLICATIONS

Application Demonstrates

! Tree equal Importance of aborting useless computation - but how perform the aborting?
How to use explicit checking and thus how speculative computation can be
supported in a system offering only conventional parallelism

Emycin Importance of aborting useless computation

Explicit termination checking unsuitable because of side-effects and sharing
of computation
Touching model approach to side-effccts

Boyer Importance of ordering, particularly the dynamic ordering enforced by touch-
ing

Travsales Importance of static ordering

One way to perform touch termination

Eight-puzzle Importance of ordering - yields speedup of 26 on 8 processors

Another way to perform touch termination

Table 8.21: Contributions of each application

The key issue, demonstrated by all the applications, is group incoherency. This occurr
when a group is stayed and later touched. Because of failure to propagate the demand,
tasks in the group may not restart, leading in worst case to deadlock. We demonstrated
with per how to use classes to solve this problem by ensuring demand continuity to all the
required tasks in a group. This is an awkward solution, however. If deadlock is the only
concern, we only need a solution like this if demand does not follow a data dependency path,
such as with multiple-approach speculative computation like per. Otherwise, we can just
wait for the tasks to be touched when demanded, so it is not necessary to eagerly restart all
the tasks. This is the case, for instance, in Boyer and Eight-puzzle. However, this entails
some performance disadvantage since all the tasks become lazy. To prevent deadlock and
loss of eagerness, we would like automatic group coherency; all the tasks in a group should
be restarted when the group is demanded.

Group incoherency is a symptom of the lack of modularity in our touching model.
Staying destroys the ordering in a group, leading to group incoherency. Furthermore, the
ordering is all absolute, leading to to unintended ordering conflicts that make it difficult to
nest speculative computation, as we discussed with Boyer. We need modularity to provide
local ordering so we can nest speculative computation arbitrarily.

We also need full cc" oiler sponsors so that we have a convenient way to reallocate
sponsorship dynamically and a way to provide more complex sponsorship/control for ap-
plications like per.

We did not require modularity or full controller sponsors for the applications in this
chapter because there was only one speculative activity in the system. While this is accept-

8.7. SUMMARY 199

able for our purpose of testing the waters of speculative computation, future work must
provide these mechanisms.

200

Chapter 9

Scheduling

In this chapter we consider optimal scheduling of speculative computation. Optimal schedul-
ing is important for two reasons. First, and most obviously, the optimal schedule for a given
problem provides the optimal control policy and hence the ideal control desired for that
problem. In addition, the optimal control policy indicates the support - system scheduling
capabilities and features - required for optimal scheduling. Second, the optimal schedule
eithe provides or allows determination of the cost1 of the optimal policy. The optimal cost
provides

1. a yardstick with which to judge the merit of ad hoc and heuristic scheduling algorithms,
and

2. an indication of the ultimate benefit of speculative computation.

Even if we cannot determine the optimal scheduling for a given problem, optimal scheduling
is still important: the optimal scheduling for a simpler, related problem can present a guide
for heuristic scheduling decisions in the original problem and suggest what support may be
important for good scheduling.

In terms of our sponsor model, optimal scheduling is important for determining task
ordering, rates, and controller sponsor policies.

In this chapter we restrict our scope to the scheduling of multiple-approach speculative
computation and we focus just on optimal scheduling policies (rather than costs). We start
by formulating the general scheduling problem for multiple-approach speculative computa-
tion. We then consider two specializations of this problem, pif and por/pand. We derive
new results for the optimal scheduling of pif in simple c','z and summarize some existing
results for the optimal scheduling of por/pand. Then we consider examples of nested pis,
pors, and pands from which we draw some conclusions about the optimal scheduling of

'In terms of the optimality cost metric.

201

202 CHAPTER 9. SCHEDULING

nested computations. Finally, we use the optimal scheduling for pif and por/pand as a
springboard to discuss the system capabilities required for scheduling.

This chapter is intended to give a flavor of scheduling for speculative computation; this
chapter is not an exhaustive treatment of the scheduling problem.

9.1 The Scheduling Problem

First we introduce some terminology which we use in the remainder of this chapter.

0.1.1 Terminology

As in the preceding chapters, a task is a sequential thread of comptitation. It is the smallest
unit of computation which may be independently scheduled. We assume we hav some
number P of processors. Throughout this chapter, we assume that all these processors
are identical. Each processor has, at each instant of time, one unit of processing power
which it may allocate amongst zero or more tasks. Thus each processor may execute one
or more tasks concurrently. The allocation of processing power to tasks is described by
rate functions. r (t) is the instantaneous rate of execution of task i on processor .j at
time t. Rate 0 corresponds to no execution (i.e. no processing powor.); rate 1 corresponds
to the maximum execution rate (i.e. full processing power) that a processor can provide;
and rate r, 0 < r < 1, corresponds to execution with fraction r processing power. More
formally, a rate r has the following interpretation. Let Cj (t, At) be the total amount of
processing received by a task i running at constant rate r in [t, t + At) on processor j. Then
ri (t) - lim -.0 .o " . Thus, executing a task at (constant) rate r for an interval At is
equivalent, in terms of the total computation performed by the task, to executing at rate
1 for an interval rAt. We call rates 0 and 1, integer rates, and rates between 0 and 1,
fractional rates. If some subset T(t) of the tasks executing on processor j at time t have a
fractional rate, we say that the tasks in Tj(t) are multiplexed.

We have the following constraints on rates:

1. All rates are in [0,1]: 0 < rj (t) _< 1 Vij,

2. No processor allocates more than one unit of processing power: E r, (t) < 1 VJ, t

3. No task executes on more than one processor simultaneously: r (t) > 0 * ri (t) =
0 Vj 5 k

Constraints 1 and 3 imply that no task receives a total rate greater than 1, i.e. Ej r, (t) < 1
Vi, t.

If the execution rate of a task i changes from nonzero to zero at time t and the execution
of task i is unfinished at time t, we say that task i is preempted at time t. A preempted task

9.1. THE SCIEDULING PROBLEM 203

is replaced by zero or more other tasks. If a task runs to completion on the same processor
on which it started, without preemption, we say the task is non-preempted.

We can approximate fractional rates by round-robin preemption with integer rates. To
approximate constant rates rl, r2, ... , rn, of respective tasks 1, 2, ... , n in some interval
At, we just have to run each task i at rate I for time riAt. (Any implementation would
approximate fractional rates in this manner.) In the limit as At - 0, we actually have
fractional rates.

The execution of task i is fully described by the vector of rate functions rj(t) -
[r, (t).... ri (t)] (Since a task may not run on more than one proceszor simultaneously
and all processors are identical, we will often just use the scalar function r1(t) to describe
the task rate.) Given a set of tasks T, a schedule for execution of these tasks is a set of
vector rate functions (ri(t),Vi 6 T} which meet the above rate constraints. A decision
point is a time t at which a scheduling decision may be made. A scheduling decision is a
specification of a set of vector rate functions, i.e. a schedule, until the next accision point.
A scheduling decision can only depend on the state at the decision point. The interval until
the next decision point may depend on the scheduling decision at the most recent decision
point and the state at that decision point. In any case) a decision point must occur at
t = 0 and at any instant that a task completes execution. A scheduling policy is a function
which, given a decision point, the current state at the decision point, and any constraints on
decision points, yields the scheduling decision at that decision point. An optimal schedule
is a schedule that minimizes the expected time to complete processing of some specified
subset of tasks in T suLject to any given constraints on decision points. An optimal policy
is a policy which achiev s an optimal schedule. We will be more precise about the input
conditions and specification of optimality in the next section.

We are generally interested in an optimal schedule without any constraints on the de-
cision points. In such schedules, a decision point may occur at each instant of time. We
call such schedules continuous decision schedules. If the decision times are restricted to
discrete points, the resulting schedule is a discrete decision schedule. For a given problem,
a continuous decision schedule can always simulate a discrete decision schedule.

Finally, a schedule in which no task is ever preempted is said to be non-preemptive.
Otherwise, the schedule is preemptive.

In general, fractional rates and preemption have nonzero overhead associated with them.
Throughout this chapter, we assume this overhead is zero.

0.1.2 Scheduling problem formulation

We formulate the general scheduling problem for multiple.approach speculative computation
as fullows.

We are given a set of N activities denoted by Ai, i = 1,...,N. Only some subset
S of these activities may be required, such as the first activity to return a result or the
first activity to return a true result. p,(t) denotes the probability, observed at time t, that

20- CHAPTER 9. SCHEDULING

activity A, will be required. We are given the a priori probabilities pi(O) M pi. Each
activity A., consists of tasks. Rather than attempting to describe the interrelationship of
tasks within an activity, we characterize (conceptually) each activity by its execution time as
a function of the resources assigned to that activity. More precisely, the execution time tj of
activity A, is given by the probability distribution function (PDF) Prob(t, < r) : F.(r,Mj)
where M(.) is the resource allocation vector. M(t) = [m11(t),m 2 (t),... ,Mj(t),.. . where
m,4(t) is the maximum processing rate allocated to activity i on processor j as a function
of time. In other words, mj,(t) is the time-varying fraction af processor j available to A,.
(The resource allocation vector should not be confused with the rate vector defined in the
previous subsection. The rate vector describes the processor resources actually utilized by
tasks whereas the resource allocation vector specifies the processor resources allocated to
activities, but perhaps not fully utilized.) We call Fj the resource execution time PDF.
Finally, we are given P identical processors, each which may execute tasks concurrently
subject to the constraints (on rates) and assumptions (zero overhead) in Section 9.1.1.

The objective is to determine an optimal scheduling policy. We define an optimal sched-
ule for this problem as a schedule for the tasks constittiLng the activities A, which minimizes
the expected execution time, defined as the time to fulfill the requiremeilts of subset S. We
allow continuous decision schedules and preemption.

The resource execution time PDF allows us to talk about activities without getting
bogged down in a description of the activities (by precedence relationships for example)
and it allows us to consider the interaction and nesting of activities in a uniform man-
ner, simply by combining resource execution PDFs. We start by determining the resource
execution time PDFs for leaf .Livitis and propagate them back up the activity tree, com-
bining the resource executior Ontme PDF at each fork and interaction point to obtain a new
resource excc'ztion tim- PDF and so on. We emphasize that resource execution PDFs are a
conceptual way of v.ewir.g scheduling; we doubt any practical gain will result from this view
since scheduling L difficult enough without the additional difficulty of trying to determine
and manipulate such PDFs.

This formulation excludes partial results (as in Section 5.4.6) and resources other than
processors. We excluded these factors to simplify the presentation. Their inclusion is
straightforward.

In the following sections we examine two specializations of this general scheduling prob-
lem. In both cases we assume that all the activities are independent and that all the
probabilities p,(t) are fixed -. their a priori values for all t. We investigate both the opti-
mal scheduling policies for '.hese problems and the characteristics of these policies, such as
whether they require fractic nal rates.

9.2 Parallel Branch Scheduling

In this section we derive the optimal scheduling for a simple specialization of the general
scheduling problem involving parallel branch scheduling. We start with parallel if (pif)

9.2. PARALLEL BRANCH SCHJEDULING 205

and then later consider an n-aty generalization of pif which we call pbranch.

0.2.1 pif

As dc-cribcd in Section 1.2.2, (pit pred consequent alternate) evaluates prod, consequent
(which we abbreviate by con) and alternate (which we abbreviate by alt) concurrently. If
prcd evaluates to true we accept the result of con and abort all, and if pred evaluates to
false, we accept the result of all and abort con. We are interested in the scheduling of pred,
con, and alt to minimize the expected execution time of pit.

In this section we restrict the predicate, prod, and each branch, con and alt, to be a
single task. Thus the predicate and branches cannot create child tasks or be another pit.
We model the execution time (at rate 1) of pred, con, and alt by random variables ti,
i = pred,con,alt, respectively, with given probability distribution functions (PDFS) F,(t),
respectively. We model the outcome of the predicate by a random variable taking values
true and false with a priori probabilities p and 1 -- p respectively. We assume that I) all
these random variables are mutually independen;, 2) tasks are always runnalAe until they
complete or abort, and 3) con and alt do not produce the same value, so we must always
evaluate pred. Under these conditions, a precise statement of the pit scher',uling problem
is as follows:

Given PDFs for tpre, teen, and talu and the probability p, schedule the execution
of the tasks on P processors to minimize the expected time to return the result.
That is, specify execution rates rprcj(t), rcon(t), rozg(t) as a function of time for
each task prod, con, and alt, respectively, to minimize the expected execution
time.

The predicate task is in the critical path, so clearly we must complete it as soon as
possible. Hence rp:nd(t) = 1 for 0 _ t :5 tPre where tprgd is the execution time of pred.
Thus this scheduling problem has two epochs: the interval 0, tpr) before pred returns and
the interval [tpredoO) after pred returns. The scheduling in this second epoch is obvious: if
prod returns true (false) and con .a.t) has not already completed, execute con (alt) at rate
1 until its completion.

Given our restriction to single tasks, the scheduling is non-trivial only for P = 2 (when
con and alt must share a single processor). For this case, the optimal scheduling policy in
the first epoch has the following simple form:

Run pred at rate I and whichever of con and alt has the higher piobability at
rate 1 until either it' completes or pred completes. If only one task remains, run
that task at rate 1 until it completes or pred completes.

Note that we only need decisions at t : 0 and the points at which tasks complete. Thus the
optimal continuous decision schedule reduces to a discrete decision schedule. The optimal
schedule is

206 CHAPTER V. SCHEDULING

rprd(t) = I for t G (0,tpred), and

if p> 1/2f rc.n(t)- 1 and r.ju(t) = 0 for t = (0, Min(tcon I trgd))

f~ r.11(t) 1 for t G It.. rnin(tcon + t alr, tprgj))

if p < 1/2 r.a (t) 1 1 and r,.n(t) = 0 for t e (0, min(tlj1 , tprg,))

(f J.o (t) = for i G [team, min(t.. + tal Itpr))

In particular, neither preemption nor fractional rates can reduce the expected
execution time further.

This result follows from a special case of the optimal scheduling for pbranch, considered
in the next section. Under some conditions preemption and fractional rates may be optimal
(such as when p > 1/2 and teen < tPrj or when p < 1/2 and t iu < tpra) but an equally
optimal schedule with non-preemption and integer rates is always possible.

0.2.2 pbranch

(pbranch pred el 2 ... em) may evaluate pred and cl, C2, ... , e,. concurrently. If pred
evaluates to an integer i 6 (1,n], pbranch returns the result of evaluating ei. Otherwise,
pbranch returns the result of evaluating em. All other ci, j i i, may be aborted once
pred iclects c,. We are interested in the scheduling of pred and all the ei to minimize the
expec.ted execution time of pbranch.

As with pff, we restrict the predicate, pred, and etch branch, ej, to be a single task in
this section. We model the execution time (at rate 1) of pred and each ei, i = 1,2, ... , n by
random variables ti, i = pred, 1,2,..., n, respectively, with given probability distribution
functions (PDFs) F,(t), respectively. We model the outcome of the predicate by a random
variable taking values 1, 2, ... , n with a priori probabilities pl, P2, ... , pn respectively. We
assume that 1) all these random variables are mutually independent, 2) tasks are always
runnable until they complete or abort, and 3) not all ej produce the same value, so we must
always evaluate pred. Under these conditions, a precise statement of the parallel branch
scheduling problem is as follows:

Given PDFs for tprd and all the ti and the probabilities pi, schedule the execu-
tion of the tsks on P processors to minimize the expected tiihe to return the
result. That is, specify execution rates rprad(t), r1(t), ... , rm(t) as a function of
time for each task to minimize the expected execution time.

As with pit, the predicate task is in the critical path, so clearly we must complete it as
soon as por.sible. Hence rprcd(t) = 1 for 0 < t < tPred where tpred is the execution time of
pred. Thus, like pif, this scheduling problem has two epochs: the inter al [0, tpad) before
pred returns ad the interval [tpredoo) after pred returns. The st heduling in this second
epoch L obvious: if pred returns i and e, has not already comp ,ed, execute e, at rate 1

9.2. PARALM L BRANCH SCHEDULYNG 207

until its completion. We define the time remaining in task cj at time tprad as the ej excess
time, which we denote by Aj.

Thus for a given scheduling policy, the expected execution time is E[e,,J + E[A], whore
E[AJ is the expected excess time given by

E[AJ = j0 (jE[A1 I (pra = fra(r)dr

fprt(t) is the probability density function (pdf) for tj,,, which we assume exists.

Given our restriction to single tasks, the scheduling is non-trivild only for n > P > 1.

We need to determine the schedulinj policy that minimizes E[A]. Our strategy is to
determine the scheduling policy that minimizes E[A I tp,,, tbr] where tbr = [t, t2.... t, l.
If a given scheduling policy r for this conditional problem is optimal for every set of values
of tpr, and tbr, then policy r is optimal for the original problem, i.e. it minimizes E[A].
(The existence of such a policy r is not guaranteed in general.)

We need some terminology before we proceed. Let xj be the processing time (i.e. amount
of processing power) received by c, prior to time tprt, i.e. -2 = j:0 rj(r)dr. We assume
throughout the following that rprmd(t) = 1 for 0 5 t _< tprd as discussed earlier. Then
for the conditional problem, we have the following result for the optimal allocation of task
processing times in the first epoch. (We follow Lemma 9.1 with a theorem relating optimal
scheduling to this processing time allocation.)

Lernma 9.1: Optimal processing time allocation given task e.:ecutlon times

Given tprgd and tbr, the optimal allocation of processing times in pbravch (for other than
prea) is as follows:

First, without loss of generality, arrange the ej in an order such that pi 2_ p,
Vi. Then

xi = min(ti, tpred, (P - 1)tprtd - j z1)

(Either assign ei processing time tg to complete the task (if ti _ tpred) or assign
ei all unallocated processing time up to tpred.) If k pi have the same value,
any re-assignment of the respective xi such that the sum of these k xi remains
unchanged is a~so optimal.

208 CHAPTER 9. SCHEDULING

Proof:

We need to show that this allocation of processing times minimizes ELA I tfrad, tbrl.
(Clearly, this allocation is realizable since E' xi _< (P - l)t,,a.) Since

E[A I tprtd, tbrJ = Epi(ti - Xi) = piti -D
i i i

minimizing E(A I tprtd, tbrj reduces to the problem:

maximize >' pj'xj
subject to 0 < xj _ min(tc, tpra) Vi

E? Xz_(P-1)tpra

This is a linear program. From a well-known result of linear programming theory, the
optimal solutions occur at the extrema of the constraint region. The extrema hero occur
for x, = 0, min(ti, tprd), and (P - 1)tp,,ed- o Xj

Now we have to show that the particular choice of these extrema mentioned in the
femrria is optimal. There are two cases:

1. E min(tit re) < (P - 1tprd

In this case, there is excess processor capacity so the optimum solution is obviously
xi = min(tc, tprd) for all i.

2. 2r min(ti, tpred) 2_ (P - i)Lpred

In this case Z? Zx = (P - 1)tprd. Assume for the moment that no two pi have the
same value. For those familiar with linear programming, the proof is obvious from a
geometric argument. We sketch an algebraic proof here.

We have U = (P - 1)tprd to distribute amongst n xi. Let cm be the upper bound on
XM (cm =_ min(tm, tpred)) for m = 1,..., n. Start with m = 1. Consider distributing
the first cm of the U amongst the xi. Since pm > pi for all i 2_ m (by hypothesis),
the cost (i.e. the p. weighted sum of xi) with this first cm is maximized by setting
XM = Cm. This leaves U - cm to distribute amongst the remaining n - m xi. We then
continue recursively with m - m + 1.

To handle two or more pi with the same value, we can transform our linear program
into an equivalent one in which no two pi' are the same by applying the following
procedure (repeatedly as necessary): If pi has the same value for all i r K, let
pi= pi, replace &- pixi in the cost equation by pi'xx', replace all the constraints
0 < zi < min(ti, tpred) for i e K by the sivgle constraint 0 < Zx' < min(Eg til K I
•tpred) (where I K I is the cardinality of K), and replace E xi in the last constraint
by ZK'. We can then apply the previous argument to this equivalent linear program.
This equivalent linear program also makes it clear that in the optimal solution the xi
for i E K may have any value so long as they obey the constraints and E, xc = X'K.

9.2. PARALLEL BRANCH SCHEDULING 209

Theorem 9.1 indicates how these xi lead to optimal schedules for the first epoch (when
0 <L t

Theorem 9.1: Optimal scheduling given task execution. times

Given tPre, and tbr, any schedule for pbranch with rpr,a(t) = I for 0 :_ t :_ tPrd and a set
of rates r, (t) (0 < t <_ tPred) which yields the optimal values of xg (xj = f'.0"'g ri(r)dr), as
given by Lemma 9.1, and subject to the following constraint's (explained in Section 9.1.1)

0 :r. (t) :_ 1 Vj,Z, ri Mt < 1 Vj, t
Vk, t,ri (L) > 0 r (t)=0VjAk

is optimal.

Proof:

We need to show that any such schedule minimizes EtA I tPraJ tbri" We have already
argued that an optimal schedule must have rpr,(t) = I for 0 . L :5 tprea. If the rates
achieve the optimal x,, then by Lemma 9.1 EtA I t prgd, tbri is minimized.

Thus for the conditional problem, .e. given tprea and tj Vi, an optimal schedule is any
schedule which achieves the optimal xi. Skich a schedule always exists: since x1 _5 tprmd We
never need a rate > 1 and we can always Rhare the processing amongst all the processors.
Iowever, it is not always straightforward to determine such a schedule: preemption or
fractional rates may be necessary to achieve the optimal xi. See the discussion in Section
9.2.3.

In several special cases, an optimal scheduling policy which minimizes E[A I tpred, tbr]
also minimizes E[A and thus constitutes a optimal scheduling policy for pbranch.

Case 1: tpred and all t, deterministic

In this case E[A = E[A I tprmd, tb .] and therefore an optimal schedule for pbranch in
the first epoch is given by any rates which satisfy the optimal xi as given previously.

Case 2: P = 2

From Lemma 9.1, the optimal xi in this case for given tpred and ti is to order the e in
non-increasing order of pi, and set xi = min(t, tprcd, t, red - Zj<j Xi). One schedule which
achieves these xi is to run each of the ei sequentially, in non-increasing order of pi, at
rate 1 until either it completes or pred completes. Thus an optimal scheduling policy for
minimizing E[A I tprcd, tbr] in the first epoch is as follows:

Run pred at rate 1 until it completes and, in non-increasing order of pi, run each
of the ej sequentially at rate 1 until either it completes or pred completes.

210 CUAPTER 9. SCIlEDULING

Note that we only need decisions at t = 0 and the points at which tasks complete. Thus
the optimal continuous decision schedule reduces to a discrete dec6ion schedule. Since
this scheduling policy is optimal given any set of values for t and t Vi, this policy is
also optimal for the original problem, i.e. it minimizes E(A). Of course, since this policy
is optimal, neither preemption nor fractional rates can reduce the expected excess time
further.

Thus we have shown the previously claimed result for pi:i.

Case 3: Restricted tpr, and tL

In some cases the optimal policy for minimizing EA I tpr Di tbrl is the same given any
set of values for trd and t, within certain ranges and therefore this policy is optimal for
minimizing E[A], provided the random variables stay within these ranges. The following is
one such case.

For the P - 1 t4 with largest pi, t t,,,d for all possible values of tp,,d and 4:

In this case, for given ir,, and ti we have xi = t r,, for the P - 1 largest pi. One
scheduling policy that, achieves these xi is to assign e, to the first available proce.sor, to
run at rate 1, in non-increasing order according to pi. Since this policy is the same for all
tpr d and t, obeying the restrictions, this policy also minimizes E[A] and thus is an optimal
scheduling policy for pbranch subject to the stated conditions on tprd and ii Vi. Once
again, this optimal continuous decision schedule reduces to a discrete decision schedule.

0.2.3 Preemption and rates

We need preemption and fractional rates, in general, for the optimal scheduling of pbranch.
The reason is that we want to avoid fragmentation in assigning tasks to processors that
cri!d lead to idle processors while outstanding tasks remain. For example, suppose P = 3,
and we have three identical e1 with tj = 3tprcd andp = Then without fractional rates
or preemption, the minimum expected excess time we can achieve is 1 . itprtd with an idle
period of stprmd on one of the processors. However, by either multiplexing all three tasks
at rate T for L E [0,LPrcd)) or by running each tasK in round-robin fashion at rate 1 for
some qua..;um like itprcd, the expected excess time is zero. This illustrates that fractional
rates are not necessary for deterministic task durations provided we can preempt tasks at
specified intervals: we can always simulate fractional rates by running tasks in round-robin
fashion for suitable quanta.

However, fractional rates tre sometimes necessary for nondeterministic task durations.
Consider the following modification of our previous example. Suppose now that the three
C, have t, = u, where u, is a uniformly distributed random variable in 0, 2tpred + c], where
(' 0 (tpred remains deterministic.) Then multiplexing is necessary to avoid an unnecessary
idle processor. Since we do not know u, we cannot simulate multiplexing with preemption.
no matter how small we choose the quantum, if it is not infinitesimal, multiplexing can still
do better. (Of course, if the quantum is infinitesimal, we have multiplexing.)

9.3. POR/PAND SCHEDULING 211

In special cases we need neither preemption nor fractional ratls. Two such special cases
are:

1. deterministic tasks with t > ta for the P - 1 tj with largest pi

Fractional rates are never optimal in this case since we need ri(t) = I to get

,':' r,(r)dr = xi = tp,* for these t. An optimal schedule may include preemption
- for example, we preempt two tasks on different processors and swap them - but
preemption never improves the schedule. Thus for this case, neither fractional rates
nor preemption are required. This meoans that the optimal continuous decision policy
amounts to a discrete decision schedule with decision points at t = 0 and t.,...

2. P = 2, deterministic or nondeterministic tasks

We never need preemption or fractional rates for this case as discussed in Case 2 of
Section 9.2.2. flowever, an optimal schedule for this cae can include fractional rates.

0.2.4 Summary

We completely characterized the optimal scheduling for pit with single tasks. The optimal
scheduling policy for pii is particularly simple: Assign priority a to the predicate task,
priority b to whichever of the consequent and alternate is most likely to be chosen, and
priority c to the other task where a > b > c. Now run the tasks in priority order at
rate I on the available processors (until the predicate completes, at which time run just the
consequent or alternate as appropriate). Preemption and fractional rates are never required
for optimal scheduling of pit.

The optimal scheduling for pbranch with single tasks is more difficult to determine
in general. We derived a rnecessary condition (Theorem 9.1) for optimal scheduling for
deterministic task execution times. It is not always straightforward to determine an opti-
mal schedule from this condition (but it is always possible). In special cases, the optimal
scheduling for this deterministic case is also optimal for nondcterministic execution times.
Finally, we showed that preemption and fractional rates are necessary, in general, for opti-
mal scheduling of pbranch.

9.3 por/pand Scheduling

We gave informal definitions of por and pand in Section 1.2.1. (See Appendix B for formal
definitions.) We consider only the scheduling of por in this section, since pand may be
framed in terms of per by the identity

(pand E, E ... E,)= (not (por (not E1) (not E2) ... (not E,))

With par, unlike with pbranch, we do not know which expression will select the result.
This key difference makes the por scheduling problem much more difficult tlian the parallel

212 CHAPTER 9. SCHEDULING

branch scheduling problem.

In this section we restrict each Et to be a single task. We model the execution time (at
rate 1) of each ; by a random variable t, with a probability distribution function (PDF)
F (t), " -= 1, 2, ... , n, respectivcly. We model the outcome of each A- by a random variable
with possible values true and false and a priori probability true of p. for i = I,2,... ,n.
We assume that all these random variables are mutually independent. We also assume that
tasks are always runnable until they complete or abort. Under these conditions, a precise
statement of the per scheduling problem i. as follows:

Given probabilities pi and PDFs for all the ti, schedule the execution of the
tasks on P processors to minimize the expected time to return the result. That
is, specify execution rates rl(t), r2(t), ... , rn(t) as a function of time for each
task to minimize the expected execution time.

0.3.1 One processor

First assume that there are integer rates and no preemption so that each ri(t) = 1 from
the time Z starts until it completes t, later. The no-preemption assumption amounts to
restricting decision points to occur only at t = 0 and when tasks complete. Under these
conditions, the expected execution time with a task order of i, j, k, ... is

E[t d + (1 - pi)(E[lj] + (1 - pi)(E[tj" + (1 - Pk)(...)))

As first proven by [Mitten], the expected execution time is minimized by ordering the tasks
for execution so that the ratio E[tg]/p, is non-decreasing. This is a very pleasing solution
for it amounts to assigning each Ei a priority pi/E[tj.

However, (constant) integer rates are not always optimal, even given the above restric-
tion on decision points. And, without this restriction, non-preemption is not always optimal
either.

Multiplexing necessary

Suppose we have two tasks with identical execution time pdfs f,(1) _= f(t) and identical
probabilities p, - p. Let t, denote the execution time of these tasks and E[t,j S [it] their
expected execution time. We assume, as always in this chapter, that the task execution
times and task outcomes arc all mutually independent. In addition, we assume that decision
points may only occur at time zero and task completion instants. Then if we run the tasks
at integer rates, the expected total execution time E[ttoa] is

E[tjoJ] = Et] + (1 - p)E[t] = 2E[t] - pE[t] (9.1)

Suppose now that we multiplex both tasks, i.e. run each at rate 1/2, until the first task
completes. Let zmi = min(t, t2) and z,,., = max(ti,t 2). Then the expected time until

9.3. POR/PARD SCHEDULING 213

the first task completes is 2E=,,i J since both tasks tun at rate 1/2 until that point, The

expected remaining execution time at that point for the continuing task is El:m 4 - E(:m,]
Thus

E[t,,, = 2E[:,,z I + (I - p)(E,a Ei-m) = (I - p)E-Z,,14 + (I + p)E(. m_

Using the identity E[mj I + E[:m c1 = 2Et] and rearranging terms, we have

E[Ct,) = 2Et - 2p(E[tJ - E[.:m, 1) (9.2)

Comparing Equations 9.1 and 9.2, we see that multiplexing is superior if E[tJ > 2E[min(tLi, t2).

Consider the following two examples.

1. Suppose tL and t2 are uniformly distributed in [C, 11. Then E[t = 1/2 and E[min(tLi, t2)
1/3. Thus integer rates are superior.

2. Suppose t1 and t2 have the hyperexponential pdf f(t) = sract + (1 - or)br - t with
0 < c < 1, a > 0, b > O, and a jA b. Then E[lf = + I.f and E[min(ti,t2)]

t2 ~1a 2 2 1 - 1 t~
+1 .1 . Now E[l] - 2E[min[tL,t 2)) = 01(l - &Z) > 0, and thus

multiplexing is always superior.

This last example demonstrates that multiplexing sometimes is optimal. Thus some-
times we need fractional rates for optimal scheduling. Ve cannot simulate fractional rates
by round-robin preemption since, as we disussed in Section 9.2.3, we do not know which
quantum size to choose (unless the quantum is infinitesimal, in which case we have fractional
rates).

Preemption necessary

rreemption is sometimes optimal with continuous decision scheduling. Suppose we have two
tasks E, and E2 where E has deterministic execution time t1 = 2 and E2 has execution time
L2 = 1 with probability .9 and L2 = 10 with probability .1. Suppose also that P, = P2 = P.
Then since E[t21/p 2 = 1.9 /p is less than E(tl]/pj = 2/p, the optimal non-preemptive
schedult (i.e. continuous time schedule) is to run E2 first, yielding an expected execution
time of i.9 + (1 - p)2 = 3.9 - 2p. However, if we run E2 until time 1, followed by E, if
necessary, and then E2, if necessary, the expected execution time is 1 + .9(1 - p)2 + .1(2 +
(1 - p)9) which simplifies to 3.9 - 2.7p. Since this is less than 3.9 - 2p, this latter schedule,
with preemption, is superior.

Thus optimal scheduling of por on a single processor in~volves fractional rates and pre-
emption in general.

214 CHAPTER 9. SCIIEDULING

9.3.2 More thnn one processor

With more than one processor, the solution of the scheduling problem is much more difficult
because the system state must include the remaining time in each task on all the other
processors, even if there is no preemption or fractional rrmtes. With one processor the
remaining time (at least with no preemption or fractional rates) is always 0.

There is a large amount of literature on scheduling to minimize the makespan, which is
the total time to execute all the given tasks. These results are applicable to our schcduling
problem wben all pi = 0 (so all tasks are required). We consider a number of special cases
based oa the literature and simple observations.

Case 1: All execution times deterministic and all p = 0.

With preemption, the total execution time of the optimal schedule is

ma(1 n

ma(P ti, max ti)

(Muntzj. (As with pbranch, we do not need fractional rates if all tasks are deterministic and
we have preemption: we can simulate fractional rates with preemption.) [Gonz78 shows
that an optimal preemptive schedule requires at most 2(n - 1) preemptions.

With non-preemption (i.e. decision points restricted to the instants at which tasks com-
plete) this deterministic scheduling prolt;em is the dual of the bin-packing problem. The
bin-packing problem, expressed in terms of our framework, is as follows:

Given n tasks with execution times t, i = 1,2,...,n and given a bound B,
partition the tasks amongst P processors to minimize P subject to Tp :5 B,
1 _< p _< P, where Tp is the total execution time of tasks in the partition
scheduled on processor p. That is, treating the tasks as items of size ti, place
the tasks in bins of size B to minimize the number of bins required.

The scheduling problem in terms of this bin-packing problem is: given n tasks with
execution times t, and given F, what is the smallest B such that the optimal number of
bins required is less than or equal to P?

Since the optimal bin-packing problem is well-known to be NP-complete, the optimal
scheduling problem for this special case without preemption is also NP-complete. This gives
a hint of what makes the por scheduling problem so difficult.

The value of preemption in this determinist:c scheduling problem is in eliminating any
processor idleness before all the processors complete. Consider the following example. Sup-
pose P = 2 and we have three tasks, each of length T. Without preemption, the best we
can do is a schedule length of 2T with one processor idle for T. With preemption, we can
get a schedule length of 3T/2, a reduction of T/2. Thus preemption can be of significant
benefit.

9.3. POR/PAND SCHEDULING 215

In general, we have the following result on the performance with and without preemp,
tion. Lot Cp be the optimal execution timi with preemption azd let CG'p be the optimal
execution time without preemption. Then CNp/Cp :_ 2 - 1/P [Gonz771. The previous
example indicates that this bound is tight at least for P = 2.

Case 2: All pi = 0, all it identically distributed with the same PDF F(t), and monotone
hazard rate (defined below). (Or all pi = 0 and all t, exponentially distributed with possibly
diffhrent parameters.)

Assuming that the probability density f1(t) exists (i.e. F(t) is differentiable), the hazird
rate for task i is

M~xi) =fi(Z4)/(- Fi(xj))l

where xj is the amount of processing (fr=o ri(r)dr) that task i has already received. The
interpretation of pi(xj) is as follows. If task i has already received an amount xi of pro-
cessing, then the probability that task i completes with infinitesimal 6 further processing is
spi(X,) + 0(62). For an exponential distribution with parameter A, p(z) = A.

If all the tasks have the same PDF with monotone hazard rate, then (Weber) shows
that the Least Hazard Rate (LHR) scheduling policy is optimal for continuous decision
scheduling. At each point in time, the.LJIR policy assigns first the task(o) with the lowest
hazard rate to processors at rate 1, then assigns the task(s) of the second lowest hazard rate
to any remaining processors at rate 1, and so on. If the number of processors available at
any point is less than the number of the lowest hazard rate tasks still unassigned, then (1)
if the hazard rate is increasing, all these tasks are multiplexed on the available processors
and (2) if the hazard rate is decreasing, these tasks are arbitrarily assigned processors at
rate 1 until no processors are available.

If all the ti are exponentially distributed (with possibly different parameters A,), a
variation of the LHR policy is optimal: assign tasks non-preemptively to processors at rate
1 in order of increasing Ai, i.e., largest E[tI first. This is the opposite of the ordering we
found with one processor (for pi > 0).

Note that if the hazard rate is decreasing, the LHR policy is non-preemptive.

Case 3: All tj are exponentially distributed

Because of the memoryless property of exponential distributions we need only consider
preemption when tasks complete, i.e. an optimal schedule with decision points restricted
to task completion times is an optimal continuous decision schedule. Assuming integer
rates, we can write an expression for the expected execution time in this case quite simply
as follows. Let A denote the current set of available, i.e. unfinished tasks, and let D(A)
denote the set of scheduling decisions given A, i.e. each element of D(A) is a set of tasks
that could be run given A. Let E[A] denote the expected execution time, given A, that is
achieved by an optimal schedule. Finally, let the exponential parameter of task t, be A, (i.e.

216 CHtAPTER 9. SCHEDULING

E[= /A). Then we have

E -dEDA)min) + Z-(1 - p)AjE[A- / (9.3)

We have not been able to find a closed form schedule for this dynamic program for-
mulation. Some special cases are very illuminating however. For all pi = 0, the optimum
scheduling, by Weber's result in Case 2 above, is to run the tasks wilth the largest E[tiJ (i.e.
at each point in time run the set of tasks with the largest E[til). For all pi = 1, the above
expression simplifies, revealing that the optimal scheduling policy is to run the tasks with
the sinallest E[t,]. Another case in which the optimal ucheduling policy is obvious is when
Ai = A for all i. In this case the optimal policy is to run tasks with the largest pi. Since
all the Ejt,] are equal, this optimal policy amounts to run the tasks with the smallest ratio
Elt,]/pi, as we found for the one-processor case. However, ordering tasks by E[t,]/pi is not
optimal in general. Consider the following example.

Suppose we have two processors and three tasks with E[t,] = E[t2] = 10, pI = P2 = 0.5,
E[t3] = a, and p3 = p. Then ordering tasks by E[tiJ/pi reduces to running tasks 1 and 2 first
if 20 < cr/p and otherwise running task 3 (and task 1 or 2) first. However, if 16 < a < 20
and p = 0.8 (so that 20 < ce/p < 25) the optimal scheduling (from Equation 9.3) is to
run task 3 (and task 1 or 2) first (assuming integer rates). (When a = 20 and p = 0.8,
either running task 3 first or running tasks 1 and 2 first is optimal.) Interestingly, if all
the tasks in this example have deterministic execution times, with the given means, rather
than exponentially distributed execution times, the optimal scheduling is exactly the same.2

Thus ordering by E[t]/pj is not optimal for deterministic tasks either.

With more than one processor, ordering tasks by E(t,]/p, amounts to simply parallelizing
the optimal scheduling policy for one processor (with integer rates and no preemption).
However, as we have seen, we can obtain a better schedule by exploiting the additional
degrees of freedom provided by additional processors.

We have not found any literature dealing with general per (i.e. 0 < pi < 1 and P > 1)
scheduling, which appears to be very difficult. Scheduling in this r.ase is the confluence of
at least two phenomena:

1. shortest, most probable tasks first

In this phenomenon, which is most common when the probability of a true result is
large, optimal scheduling reduces to running the tasks first that minimize some metric
favoring the shortest and most probable tasks. For example, with one processor
and non-preemption, the metric is the expected task length divided by the task's
probability of success.

2This Is a coincidence; the optimal scheduling for exponential and deterministic tasks is not the same in
general.

9.3. POR/PAlD SCHEDULING 217

2. bin-packing

In this phenomenon, which is most common when the probability of a true result is
small, optimal scheduling reduces to ordering all the tasks to require the least total
time. Of course, bin-packing becomes more difficult and less effective as the variability
of task lengths increases. Weber's result in Case 2 above indicates that bin-packing
for certain cases in which all pi = 0 reduces to running the longest tasks first.

We saw the first phenomenon with one processor and with Case 3 above and the second
phenomenon with the deterministic tasks in Cse 1 above. The interplay between these
different phenomena contribute to the difficulty with scheduling.

The difficulty of por scheduling suggests concentrating on special cases, bounds, and
heuristics. One heuristic is to divide the scheduling into regimes roughly corresponding
to the above phenomena and within each regime apply the solution consistent with its
dominant phenomenon.

0.3.3 Preemption and rates

We need preemption in general. As we saw with one processor, preemption is sometimes
necessary so we can switch to the most promising task. In addition to this phenomenon, with
more than one processor we sometimes need preemption to ensure the best "bin-packing"
of tasks, i.e. minimal processor idle time.

We also need fractional rates in general. We saw cases with both one and more than
one processor in which multiplexing is sometimes necessary. Fractional rates are useful for
minimizing idleness when competing with a deadline. With pbranch, branch tasks compete
with the deadline established by the predicate task. With por, tasks compete with the
deadline established by the completion time of other tbks. Such a competition may take
the form of bin-packing, (as we saw with more than one processor) or multiplexing to return
the first true value (as we saw with one processor). If the deadline is known, we do not
actually need fractional rates; we can simply use integer rates and preemption as discussed
in Section 9.2.3. However, if the deadline is nondeterministic, we do need fractional rates.
As discussed in Section 9.2.3, we cannot simulate fractional rates with preemption, unless
the preemption quantum is infinitesimal (in which case we have fractional rates).

9.3.4 Summary

We provided results for por/pand scheduling in special cases. General por/pand scheduling
is a difficult problem. We demonstrated that preemption and fractional rates are necessary,
in general, for optimal scheduling of por/pand.

218 CHAPTER 9. SCHEDULING

9.4 Nested Computations

Our ultimate interest is the scheduling of nested computation, such as nested pits, pands,
and pors. The resource execution time PDF that we described in Section 9.1.2 provides a
straightforward conceptual way to think about such problems by propagating the resource
execution time PDFs for leaf activities up the activity tree as we explained in Section 9.1.2.
Our examination of some "leaf activities" (simple pit and por/pand) suggests that this
approach is, unfortunately, impossibly difficult except for special cases. In many (simple)
cases we can solve the entire scheduling problem at the top level without following the
resource execution time PDF approach. To determine the behavior of the optimal scheduling
for nested computations, we consider four such special cases.

Case 1: Nested pors or pands

Provided that the "leaf" disjuncts (conjuncts) are all single tasks, we can treat this case
by collapsing the nested pors (pands) into a single par (pand) with all disjuncts (conjuncts)
single tasks. For example,

(par (par A B) C) -- (par A B C)

Then we can apply the results for single task par (pand) scheduling.

Case 2: Nested pits

We consider two of the three possible cases for nesting pits. First we consider

(pit A (pit B C D) E)

where A, B, C, D, and E are all single tasks. As in Section 9.2.1, A is in the critical path
so clearly we must execute it at rate 1. Thus this problem has two major epochs, one before
A completes, and one after A completes, as in Section 9.2.1. Once again, the scheduling in
the second epoch is obvious.

If P = 2, we can treat the inner pit as a single task for the first epoch: it is never nec-
essary to interleave E between B and C or between B and D. Thus the optimal scheduling
policy is a simple composition of the optimal scheduling for each pit in isolation with single
tasks.

However, this is not always the case. Suppose that all the tasks have deterministic
execution time 1, P = 3, and pA = PB = 0.6 where p, is the probability that task i returns
a true value. Then if we compose the optimal scheduling for each pit in isolation, we
have the following schedule: run tasks A, B, and C simultaneously followed by tasks D or
E if necessary. (Since PA > 1/2, we favor (pit B C D) over E and since PB > 1/2, we
favor C over D.) This schedule has an expected execution time of pApB + 2pA(1 - PB) +
2(1 - PA) = 1.64 However, a better schedule is to run tasks A, B, and E simultaneously
followed by tasks C or D if necessary. This latter schedule has an expected execution time

9.4. NESTED COMPUTATIONS 219

of 2pA + (1 - PA) = 1.6. Thus even though PA > 1/2, it is better to run B rather than C
or D of (pit B C D).

Now we consider

(pit (pit A B C) D B)

With the result of pit interpreted as a boolean value, we can no longer assume, as we did
in our analysis in Section 9.2.1, that the consequent and alternate never return the same
value. Consequently, with nested pits there is the possibility that we may not need to
evaluate the predicate of a pit. For example, in in the above expression, if task A has
deterministic execution time 100, all the other tasks have deterministic execution time 1,
and pB = Pc = 1/2, the optimal schedule for P = 2 begins by evaluating tasks B and C
simultaneously. If B and C yield the same value, the execution time is 2; otherwise it is
101. Thus the optimal scheduling of pit depends, in general, on the values returned by the
consequent and alternate.

Composing the optimal scheduling for each pit in isolation leads to the following sched-
ule for the above expression: Devote all processors to evaluating (pit A B C) and any
remaining processors to evaluating D and E in order of their probability of being required.
This schedule is is optimal, for example, if all tasks have deterministic execution time 1,
P - 4, and PA = 0.5, PB = 0.9, pc = 0.9. However, if we change the task probabilities to
PA = 0.9, PB = 0.9, PC = 0.1, a better schedule is to run tasks A, B, D, and E simulta-
neously, followed by C if necessary. Or, if P = 2 and PD = PC = 1/2, a better schedule
is to run A and D (or E) on each processor, followed by either B or C (depending on the
outcome of A) and B.

In summary, the optimal schedule for nested pits depends on the type of nesting, the
task parameters, and the number of processors available. In particular, the optimal schedule
for pit is not necessarily the simple composition of the optimal schedule for each pit in
isolation. Thus the optimal strategy is not nestable in general.

Case 3: Nested pit s and pors

The optimal scheduling strategy may or may not be nestable in this case as well. Con-
sider the expression

(pit (por A B) C D)

Suppose P = 2 and A, B, C, and D are all single tasks with deterministic execution times
of 1 for B, C, and D and 2 for A. Let A and B have probability 1/2 and pB respectively
of being true. Then if pB = 1/4, the optimum strategy is to run all tasks at rate 1 in the
following manner. Run A on one processor and B on the other processor. If B yields false,
follow B by C and D in either order and if B yields true, follow B by D. This is a nestable
policy. in isolation we would run the predicate of the pit first. However, if PB = 1/2, the
optimum strategy is run B followed by A on one processor and C followed by D on the
oth, : processor. This is not a nestable policy.

220 CHAPTER V. SCHEDULING

Case 4: Nested pands and pors

Once again the optimal scheduling strategy may or may not be nestable. Consider the
expression

(pand (por A B) C)

Suppose P = 2 and tasks A, B, and C are all deterministic with length 1. If PA = PB = 0.1
and po = 0.9 the optimal strategy is to run A and B first on the two processors, at rate
1, followed by C (if necessary). This is a nestable policy. However, if PA = 0.0, PB = 0.5
and po = 0.1 the optimal strategy is to run A and C first on the two processors, at rate 1,
followed by B (if necessary). This is not a nestable policy.

Thus, in general, the optimal scheduling of multiple-approach speculative computation
depends on the context (e.g. pit vs. paa..I) as well as the parameters, such as the number
of processors and the task PDFs and probabilities. In particular, the optimal scheduling
policy for a pii or per in isolation is not necessarily optimal when the computation is
embedded within other computation. One of the main areas for future work is to further
investigate the scheduling of nested computations to determine the conditions under which
nes3table policies are optimal and the cost of employing them when they are sub-optimal.
The results of such investigation will have significant impact on the support provided for
modularity in multiple-approach speculative computation.

9.5 Scheduler Capabilities

The results and examples that we have presented in this chapter for optimal scheduling
indicate that continuous decision scheduling, preemption, and fractional rates are important
for scheduling speculative computation. Continuous decision scheduling is important so the
scheduling can respond to changes in information, in the tasks scheduled and in the system
-, such as a change in the number of processors available for speculative computation.
Preemption is essential to implement continuous decision scheduling decisions. Fractional
rates are sometimes necessary when competing against an unknown deadline.

In terms of our sponsor model, continuous decision scheduling means that controller
sponsors must be active agents monitoring the progress of computation. Priorities - the
means for specifying preemption in the sponsor model - must be dynamic. We saw in
this chapter that the optimal scheduling sometimes requires preemption at precise inter-
vals. This requires some means of tracking the duration of computation in our sponsor
model. We already mentioned that duration is a useful capability for controlling potentially
infinite computation. Rates must also be dynamic. Finally, continuous decision schedul-
ing introduces an new component into the scheduling problem. the cost of performing the
scheduling itself. For our sponsor model, it is important that the controller sponsor policies
be computationally cheap and thus simple.

9.6. SUMMARY 221

An interesting question is whether we need (instantaneous) fractional rates in practice.
We can always simulate instantaneous rates to a given degree of precision by round-robin
preemption with a suitable quanturm size. Thus, provided we are willing to pay a certain
cost, we do not need instantaneous rates. The essential issue with rates revolves around
three factors:

1. the benefits of rates,

2. the cost of preemptions to achieve rates, and

3. the ease of specifying the scheduling policy.

These first two factors are obvious. The last factor addresses the implementation of rates:
it may be easier (and perhaps more cost effective too) to specify rates and let the scheduler
manage the preemption schedule to achieve them, rather than forcing the user to build the
preemption schedule into controller sponsor policies.

We saw in this chapter that nested scheduling is not optimal in general. This suggests
that it is important for controllers to communicate and interact in scheduling, as described
in Section 5.4.3. However, specification of such communication conflicts to some degree
with the desire for modularity that we stated in Section 2.1. This conflict indicates there
is a tradeoff between the performance of optimal scheduling and the complexity of optimal
schedule specification and control.

Further work is necessary to investigate the cost/benefit tradeoff of the capabilities
suggested by optimal scheduling.

9.6 Summary

In this chapter we gave a flavor of the optimal scheduling problem for multiple-approach
speculative computation. That flavor is, for the most part, not very appetizing due to
the intrinsic difficulty of the scheduling problems involved. For some simple cases we were
able to make headway. We derived new results for the optimal scheduling of pbranch (the
n-ary generalization of pif) on P processors. For por/pand we examined a few special
cases and summarized the results by others for a few special cases. All these results are
for simple cases with independent tasks and no dese..ndants or nesting of computation.
Future work must address the complications of dependent tasks, descendant tasks, and
sharing of computation. We gave several examples illustrating that the optimal scheduling
for isolated computation is not necessarily optimal when the computation is nested within
other computation. Finally, we extrapolated from our results and discussed the support
required for optimal scheduling.

Although difficult, the study of scheduling problems is very important to the foundation
of speculative computation, both theoretically, and practically so we know (1) the ideal
scheduling policies for these problems and what support these policies require, and (2) the

222 CHAPTER 9. SCHEDULING

optimal cost of scheduling problems. With the optimal cost wt can assess the merit of
other scheduling policies and determine the ultimate benefit of speculative computation.
The difficulty xf the general scheduling problems suggests progress by examining special
cases, bounds, and heutistics.

Ch 'pter 10

Implementation Details

Tiw chapter de,-ibet the mplementatiou et4ils of our touching model. As stated in
SeAia 1.5, our goals in this iniplementation were firstly, to minimize the changes to the
existing Multilisp Iaiguag- d.Fnitioti and, in particular, retain future, and secondly, to
minimize the impact of our support for tbieculative computation on the performance of
conventional, mandatory computation.

Our implementation is an extension of the original Multilisp implementation by Halstead
and Loaiza described in [Hals85J. Multilisp is compiled to a virtual stack machine language
called MCODE, which is implemented by a byte-code interpreter written in C. A copy of
this interpreter executes on each processor of the underlying multiprocessor - the Concert
Multiprocessor or the Encore Multimax for this workr, as described in the beginning of
Chapter 8. Since Multilisp is interpreted, it is slow in absolute terms.

In adding our support for speculative computation we retained most of this original
implementation, only changing the implementation to be consistent with our additions.
This achieved our first goal.

To achieve our second goal, we distinguished mandatory tasks - the tasks in the original
implementation - and speculative tasks - the tasks we added for speculative computation

as described in Section 6.2.

We discuss the four main additions to the original implementation, present some per-
formance figures, and close with som thoughts on how to improve the performance of the
implementation.

10.1 Speculative Tasks

Speculative tasks are created as described in Section 6.2. We represent speculative tasks
in the implementation by speculative task objects which complement the mandatory task
objects in the original implementation. In addition to the same six fields as a mandatory

223

224 CHAPTER IO. IMPLEMENTATION DETAILS

task object (documented in [Hals86b]), a speculative task object has the following fields:

1. a aource priority field,

2. an effective priority field,

3. four other attribute fields, which we describe later in Section 10.4,

4. four fields, which we describe in Section 10.2, for task state, position, location, and
polling, and

5. a field for miscellaneous purposes which we won't describe.

These 17 fields - each a lisp object - make a speculative task object almost three times
larger than a mandatory task object.

The source priority is initialized to the source priority argument specified by spec-future
or make-group, or inherited from the effective priority of the parent task as described later.
Subsequently the source priority may be changed by change-priority (see Appendix A)
and staying (see Section 10.4). The effective priority is the maximum of the source priority
and effective priority of the maximum priority task blocked on the task's future object.
Tasks are scheduled for execution according to this effective priority, as described in Sec-
tion 10.2. All priorities in this implementation are integers in the range (0, MA NDI where
MAND is 222 - 1, the largest integer representable as immediate data in a Multilisp object.

We distinguish mandatory and speculative tasks by their effective priorities. Speculative
tasks, which are always represented by speculative task objects, have effective priority in
the subrange [0, MAX], where MAX = AAND - 1. (Source priorities are also restricted
to this range.) Mandatory tasks have effective priority MAND. (The scheduling algorithm
treats MAX and MAND as equivalent though - see Section 10.2.) There are two types of
mandatory tasks: "real" mandatory tasks created by a mandatory task and represented by a
mandatory task object (which has implicit effective priority MAND), and quasi-mandatory
tasks represented by a speculative task object. Quasi-mandatory tasks begin life as spec-
ulative tasks and subsequently become mandatory when touched by a mandatory t or
promoted to mandatory status (via promote-task or ,'placx-eq-xand). The foUowin& cable
should make these distinctions clear.

Task type Effective Priority Representation
(real) mandatory MAND mandatory task object

(quasi) mandatory MAND speculative task object
speculative 6 [0, MAX] speculative task object

Task creation works as folows. When a mandatory task' executes f uture, dfutre, or

delay, the child task is a mandatory task. When a processor running a mandatory task

'For now on, by mandatory task we mean either a real or a quasi.mandatory task unless stated otherwise.

10.2. PREEMPTIVE SCIEDULING 225

executes future, the processor continues the paent task and sprwns the child task, unless
there are no other processors available, in which case the processor continues the child
task and queues the parent task. (See Section 10.2 for details.) This slight variation from
the original implementation provides cheap task creation (maintaining locality of reference)
while yielding unfair scheduling when required, i.e. when the machine saturates. When a
processor running a mandatory task executes dfuture, the processor always continues the
parent task and spawns the child task, as in the original implementation.

When any task executes spec-future or make-group, the child task is a speculative
task with initial source priority given by the source priority argument. When a speculative
task executes future or dfuture, the child task is a speculative task with initial source
priority given by the effective priority of the parent task (at that time). When a task creates
a speculative task, the processor executing the task continues the parent task and spawns
the child task unless the child has a greater effective priority, in which case the processor
continues the child and spawns the parent. Finally, when a speculative task executes delay,
the child task is a speculative task with source priority 0 so the task does not run until
touched. The following table summarizes these task creation details.

Parent task Parent executes [Child task Source priority
mandatory (future E), (df uture E), or (delay E) mandatory N/A

_(spec-f uture E 8) or (make-group TaE) s-culative 8
speculative, (future B) or (df uture E) speculative p

with effective (delay E) speculative 0
priority p (spec-future E a) or (make-group E a) IspculTatIve a

In our hplementation we insist that a future object have not more than one associated
speculative task object. This amounts to banning the execution of call/cc by speculative
and quasi-mandatory tasks. In the original implementation (as in ours for real mandatory
tasks) call/cc creates a copy of the task object. Consequently, multiple tasks - active
simultaneously - can have the same future object. Limiting the number of speculative
tasks per future simplifies the implementation tremendously; priority propagation involves
only task chains, not treca (except for class sponsors) and futures name unique tasks. This
latter consequence is useful for adding and removing tasks to and from classes. It is not
at all clear what call/cc should mean in a parallel environment anyway (especially in the
presence of side-effects). (Katz] presents one point of view on this controversy.

10.2 Preemptive Scheduling

The scheduling algorithm divides tasks into two types: non-preeniptable and preemptable.
Speculative tasks with priority2 MAX and mandatory tasks comprise the first type and
speculative tasks with priority in the interval [1, MAX - 1] comprise the second type. Tasks
with priority 0 are never scheduled for execution.

'By task priority in this section we mean the task's effective priority.

226 CHAPTER 10. IMPLEMENTATION DETAILS

The scheduling algorithm treats priorities MAX and MAND as equivalent. This allows
preemptability and stayability to be orthogonal within one simple priority propagation al-
gorithm: tasks of priority 2_ MAX are non-preemptable, tasks of priority :_ MAX are
stayable, and the max combining-rule remains applicable for all priorities. For instance, if a
non-preemptable, non-stayable (i.e. mandatory) task touches a non-preemptable, stayable
task, the touchee automatically becomes non-stayable by the max combining-rule. Like-
wise, if a non-preemptable, stayable task touches a preemptable, stayable task, the touchee
automatically becomes a non-preemptable, stayable task. The following table illustrates
this orthogonality.

Non.stayable I Stayable
Non-preemptable mandatory task speculative task

(priority MAND) priority MAX
Preemptable N/A speculative task

I prioritye [1, MAX - 11

We want this orthogonality so we can run a speculative task at the same upriority" as a
mandatory task, so it is non-preemptable, and still be able to stay the speculative task. For
instance, if a mandatory task demands a per we want (one or more of) the disjunct tasks
to run at top priority to obey demand transitivity but we still want to be able to stay the
task(s) should some other disjunct return true first. (We have to be careful in such cases
to sponsor the disjunct task with priority MAX, as discussed later, and not MAND.)

The scheduling algorithm groups processors into clusters (which map to slices on Concert
[Hals86al). Each cluster has the following data structures for scheduling:

1. a mandq - a LIFO queue for pending non-preemptable tasks

Pending mandatory tasks are LIFO queued, as in the original implementation.

2. a specq - a priority queue for pending preemptable tasks

Pending speculative tasks with the same priority are FIFO queued.

3. a procq - a priority queue of preemptable tasks running in that cluster

4. an array of preempt slots, one for each processor in the cluster.

A free processor, i.e. a processor not currently executing any task, continually polls, in
the following order, its preempt slot, its mandq, and its specq, and the mandq of other
clusters until it finds a task. If the task found is a preemptable task, the processor is
preempted3 and the task is entered in the priority queue of preemptable running tasks for
that cluster.

A processor executing a preemptable task periodically checks its preempt slot and its
specq. If the processor finds a task in its preempt slot, it injects the currently executing task

3Imagine a fee processor as running a umake work' task with priority 0.

10.2. PREEMPTIVE SCIEDULING 227

into the system (as described o&,ortly) and executes the new task instead. If the priority of
top priority task in the spiccq exceeds the priority of the currently executing task, the two
tasks are swapped.

In addition, any processor executing a speculative task (any stayable task, preemptable
or not) checks the task's "polling' field every 'quantum" of instructions executed and just
before spawning a child task. This polling field is used to signal a change in a running
task's priority. If it indicates a change in priority, the task is scheduled according to its
now priority. If the new priority is MAND or MAX, the processor injects the task into
the system as a non-preemptable task (unless the old priority was MAX) and the processor
becomes free. If the new priority is 0, the task is descheduled, i.e. stayed, and the processor
becomes free. Otherwise, the new priority is compared with the priority of the top priority
task in the specq and the tasks swapped if necessary. This polling is the run-time cost of
priorities.

When a processor spawns a task or otherwise injects a (non-stryed) task into t,: system,
the task is scheduled as follows:

" If the task is non-preemptable:

1. If a free processor exists within the cluster, it is preempted with the task, that
is, the task is inserted in that processor's preempt slot.

2. If there are no free processors within the cluster and at least one processor is
executing a preemptable task, the lowest priority preemptable task, according to
the running task priority queue, is preempted by the new task.

3. If all the processors within the cluster are busy with non-preemptable tasks, the
other clusters are searched for one with - frc- processor. If one such procewur
is found, it is pree'. 1pted with the new task. If none is found, the other clusters
are again searche,!, this time for a free processor or any preemptable running
task. The first su.h processor found is preempted with the new task. If still no
suitable processor is found, there are two cases. If the new task is a mandatory
task just created with future, the parent task is inserted in the local cluster's
mandq and the processor continues the new task. Otherwise, the new task is
inserted in the local cluster's mandq.

" If the task is preemptable:

1. If the local cluster has a free processor, it is preempted with the new task.
2. If the priority of the new task is greater than the lowest priority preemptable

task running in the cluster, then that task is preempted by the new task.
3. Otherwise, the other clusters are searched for a free processor to preempt. If

none is found, the new task is inserted in the local cluster's specq.

Each cluster maintains a state variable cluster to enhance the efficiency of this scheduling
algorithm. This variable allnws a processor to deduce the state of another cluster with a
single read. Cluster states are:

228 CHAPTER 10. IMPLEMENTATION DETAILS

1. at least one free processor,

2. all processors busy, but at least one running preemptable task, and

3. all processors busy with non-preemptable tasks.

The mandq is a LIFO list consed out of heap, just as in the original implementation.

The specq is a straightforward heap queue (see, e.g.. the section on heapsorts in (Knuth])
implemented with an array. The array size is adjusted dynamically to be between one and
two times the number of tasks in the specq. When the number of tasks in the specq exceeds
the array size, the specq is copied to an array of double the size. The garbage collector
reclaims the array size by similar copying whenever the number of tasks in the specq is less
than half the array size (except for a certain minimum array size).

The distributed specqs collectively approximate a global priority queue for preemptable
tasks by periodically "balancing" the specqs. Whenever a cluster is in state 2 (all processors
busy and at least one preemptable task running), it periodically compares the priority of the
top two tasks in its specq with the priority of the top two in the specq of its neighbor and
transfers tasks, if necessary, until no imbalance remains. Such balancing is not necessary in
cluster state I since the scheduling algorithm does it implicitly while the cluster searches for
a task. We avoid balancing in cluster state 3 to minimize the overhead on mandatory tasks.
This can lead t imbalances but the scheduling algorithm minimizes these imbalances so
long as creation and termination of preemptable tasks continues.

The procq is implemented as a small array, with size equal to the number of processors
in a cluster, sorted by linear search.

To support the scheduling algorithm, each speculative task has the following three fields:

1. a state field, indicating the state of the task.

A speculative task is in one of six states: running - the task is executing; runnable
- the task is queued awaiting a free processor; blocked - the task is queued on an
undetermined future object; stayed - tha effective priority of the task is 0; staying -
the task is staying other tasks; and terminated. The state and the following two fields
give all the information necessary to reposition the task should its priority chae.

2. a location field, describing the location of the task if it is runnable or blocked

If the task is runnable, the location identifies the specq in case the task must be
repositioned or removed from the spccq. If the task is blocked, the location identifies
the future on which it is blocked so the maxwaiter (see Section 10.3) can be updated
if the task priority changes. If the task is running, the scheduling algorithm handles
any change in task priority. Finally, any change in priority of a stayed task is handled
by the task (i.e. toucher) which caused it to change. In fact, the scheduling algorithm
maintains no pointers to stayed tasks, so that they may be garbage-collected when
otherwise inaccessible.

10.3. PRIORITY PROPAGATION 229

3. a position field, indicating the position of the task if it is runnable or blncked

If the task is runnable or blocked, the position identifies the task in the spccq or
toucher queue so the task may be repositioned or removed if its priority changes.

10.3 Priority Propagation

For priority propagation we added two additional fields to all future objects: a specq field
and a maxwaiter field. The specq field is a queue for speculative task touchers, which com-
plements the queue for mandatory task touchers retained from the original implementation.
We distinguish the two queues for efficiency reasons, i.e. to avoid imposing the speculative
task management overhead on mandatory tasks. The maxwaiter field contains the prior-
ity of the maximum-priority task touching the future. Thus maxwaiter is MAND if the
mandatory task queue is non-empty.

The specq field is a list of speculative tasks headed by the maximum-priority speculative
toucher. It is not a priority queue, to avoid excessive overhead. When a speculative task
touches a future, it compares its priority with the future's maxwaiter field. If the task
priority is less than or equal to the the maxwaiter, the task is simply linked in behind the
maximum priority toucher task. If the task priority is greater than the maxwaiter, the
maxwaiter field is updated and the task is consed on the head of the toucher list. The hitch
comes if the priority of a toucher task changes. If the task is not the maximum priority
toucher, then the two cases are straightforward: If the priority exceeds the maxwaiter, then
the maxwaiter and maximum priority task are updated, otherwise nothing happens. If
the task is the maximum priority toucher, then any increase in priority simply increases
maxwaiter, but any decrease requires a linear search of the remaining touchers for possibly
a new maximum priority waiter. Only in this last case is a priority queue cheaper - a
priority queue is far more expensive in the previous three cases. Furthermore, this last case
should be rather rare.

To aid in any required repositioning of tasks in this specq list, the position field of
each task points to the previous cons cell in the list (or the future object for the maximum
priority toucher task).

When a mandatory task touches a future, the task updates the maxwaiter field to
MAND, if it is not MAND already, and adds itself to the head of the mandq list of touchers,
as in the original implementation.

As mentioned in Section 6.1.1 we employ eager priority propagation, which works as
follows. It a task's source priority changes (due to explicit change with change-priority
or staying - see Section 10.4) or its maxwaiter changes (due to touching or a priority change
in a toucher task), the task's effective priority is updated, if necessary, to the maximum of
the source priority and maxwaiter priority, unless the effective priority is already MAND.
To promote a speculative task to mandatory status we set its effective priority to MAND
and to demote such a task we set its effective priority back to the maximum of its source and
rnaxwa;it.er ... ic.r: (_ .,ect the task into the scheduler). The other effective attributes

230 CHAPTER 10. IMPLEMENTATION DETAILS

of the task (described in Section 10.4) are updated to the attributes of whatever task supplies

the ,ffectivu priority. If the effective priority changes, the subsequent action depends on the
task state as follows:

1. if state is running or staying, set the task's pollir.g field to indicate a change in priority

2. if state is runnable, adjust the position of the task in its specq to reflect its new
priority, unless this new priority is O, in which case remove the task from, the specq
and set its state to stayed

3. if state is stayed, inject the task in system, adjusting its state to running or runnable
as appropriate

4. if state is blocked, perform the actions described previously, repositioning, the task in
the touchee's specq and if necessary, updating the maxwaiter priority arid repeating
this cycle until the end of the touch chain.

We implemented class spcvn.ors using this same touching mechanism. To sponsor a task
within a class we touch the tsk with a "fake" speculative task object with the effective
priority of the class and to urisponsor such a task we "untouch" the task, removing the fake
touche: task. (Only speculative and quasi-mandatory tasks can be members of a class; there
is no n,-ed for real mandatory tasks to be members of a class since they cannot be stayed
or preempted.) We represent a class sponsor as a task-like object with the class effective
priority, the class effective attributes, a list of class members, and a list of fake task objects
touching sponsored tasks. See Figure 10.1. The class effective priority never exceeds MAX
to avoid inadvertently turning class-sponsored tasks into mandatory tasks.

Priority propagation deals with such a class sponsor object exactly the same as a spec-
ulative i.ask, except the effective priority and effective attributes are copied to each of the
fake task objects in the class sponsor list and then propagated, as before, down the touch
chain headed by each fake task. Type all class sponsors can sponsor multiple tasks rz
shown in Figure 10.1) and thus al(ow a fork in the touch chain. Our eager priority propa-
gatica. follows the branches in such a fork one at a time in a depth-first fashion, keeping the
class spcnsor locked until all branchs are traversed. This can be grossly inefficient. Type
pqueue class sponsors maintain a priority queue (implemented the same as the specq in the
scheduling algorithm) of class members, instead of a list, and propagate effective priority
and effecc;ive attributes to the top-priority member of the class.

10.4 Staying

Only speculative tasks can be stayed, mandatory tasks, even quasi-mandatory tasks, cannot
be stayed. This is a consequence of our two goals of minimal changes and minimal per-
formar.ce izrpact on conventional, mandatory computation. Thus the user must perform
explicit checking to .-. claim irrelevant mandatory tasks. In our view, any user generating

10.4. STAYING 231

(lake
fake

(touching A) (tou ,lng B)

Ifuture
ftr

spccq

task

ts
eq

Figure 10.1: A class sponsor and sponsored tasks

irrelevant mandatory tasks is mis-using the system: mandatory tasks should be mandatory
in the sense defined in Section 1.1.

Staying has two requirements:

1. we must be able to prevent run-away task phenomena, and

2. we must be able to stay all the descendants of a group. (We also have a stay-task
construct - see Appendix A - which performs the staying operation on a task and
all its descendants.)

We meet the first requirement by suspending the creation of any new tasks in a group while
any staying is in progress in the group. We meet the second requirement by maintaining a
data structure we call the tasknode tree that lists all the descendants of each task.

The tasknode tree consists of subtrees rooted by group objects, as depicted in Figure
10.2, with one group object per group. Each group object contains a variable called staycount
which indicates the number of stayers active within that group. Whenever a speculative
task or group is created, the staycount in the parent task's group (or root group if the
parent is a mandatory task) is checked. If the staycount is zero, a new tasknode, or group
object as appropriate, is created, linked into the tasknode tree, and the parent returns.
Otherwise, the parent task backs out of the task or group creation, and becomes a "stay
helper", assisting any stayers in the parent group. When the staycount in this group returns
to zero, the stay helper checks the status of the original "backed out" task and resumes it

232 CHAPTER 10. IMPLEMENTATION DETAILS

grougpou

obec

Iakid

Figure .0.2: Example tasknode tree (baclcpointers not shown)

10.4. STAYING 233

if it has not been stayed. Thus the staycount is the means by which we prevent new tasks
being spawned in a group while we are staying in the group.

The staying algorithm performed by each stayer proceeds in three phases. The algorithm
dove-tails nicely with groups to loc.ize the impact of staying to a group and its descendants.
The sourcc group mentioned in the following is the group specified by stay-group (or the
group to which the task specified by stay-task belongs).

Phase 1: the marking phase

In Phase 1 the staycount is incremented in the source group and each descendant group
(i.e. all groups in the node tree rooted by the source group). Once a group's staycount is
nonzero no new tasks or groups may be added to that group until staying is completed.
Thus there can be no run.away task phenomenon within a marked group. However, there is
still a potential run-away with groups: there is a race between marking groups and creating
new groups.

This potential run-away is mitigated by the relative rate of marking and group creation.
Marking is ,uch faster than group creation. Marking involves locking the current group,
incrementing the staycount in the group, unlocking the group, and cdring down the list of
child groups, repeating the process recursively for each child group. The marking process
cannot be interrupted, so this cycle can only be delayed by the time required to lock the
group. Group creation involves creating and filling in a new group object, a new future
object for the group, and a new task object for the future object. The parent group object
must then be locked, the staycount checked for zero, the new group linked into the node
trcc, =.. d thc parent group unlocked.

Because of the large difference in propagation rates, the mark.ng wMll c th up to run-
away group creation eventually.4 Thus we view group run-away as a solved problem.

Phase 2: the staying phase

In Phase 2 all the descendants of the source group (or task specified by stay-task) are
traversed and the source priority of each descendant is set to 0. This change, if any, in the
source priority is propagated as described in Section 10.3.6 If the effective priority of the
task is then zero, the task is stayed: it is ineligible to run and will be descheduled if it is
running.

'Actually, the time to complete Phase 1 is bounded because of the conning associated with group creation.
A garbage collection flip Is prevented while any staying Is In progress, so group creation must eventually
cease. Once this happens, the time to lock a group Is bounded (by a constant proportional to the number of
processors) since (1) only a finite number of stayers compete for the group locks (all other potential group
locking activity is halted pending the gc flip), (2) each stayer holds a group lock for a bounded time, and (3)
each stayer makes forward progress. Thus the time to complete Phase 1 Is bounded by a (large) constant
proportional to the heap size and the number of processors.

6Thus a task temporarily promoted to mandatory status is not stayed until it is demoted.

234 CHAPTER 10. IMPLEMENTATION DETAILS

Phase 3: the cleaning phase

Finally, in Phase 3 the staycount is decrementcd in the source group and in each descendant
group, thus undoing Phase 1. If the stay,.ount in a group returns to zero, any pending task
creations may proceed (assuming their parent task was not stayed).

In the present implementation, an individual stayer performs the staying algorithm
sequentially, although there can be more than one stayer active in a group simultaneously.
Furthermore, stay helpers merely spin wait until the stayer completes. Both stayers and
stay helpers are obvious sources of parallelism in the staying algorithm. All stayers and
stay helpers have a task state of "staying.*

As discussed in Section 6.3, we solved the intergroup touchi..e problem in our imple-
mentation by assigning each task an effective "owner3 which is responsible for staying the
task Each speculative task has the following four attribute fields for implementing this
effective ownership.

1. the group object of the task,

2. the tasknode object of the task,

3. the effective group, and

4. the effective tsknnde.

When a task is created, the effective group and effective tasknodo are initialized to the cffec-
tive group and effective tasknode, respectively, of the parent task. (The effective group and
effective tasknode of a mandatory task are the root group object and the effective tasknode
of a make-group task is that task's group object.) Once a task's maxwaiter priority first
exceeds its source priority, the effective group and effective tasknode are thereafter either
(I) the group object and tasknode object, respectively, if the source priority contributes
the effective priority, or (2) the effective group and effective tasknode, respectively, of the
toucher task contributing the effective priority. Priority propagation updates the effective
group and effective tasknode, as stated earlier. The effective tasknode is the 'owner" of a
task; the effective group merely gives the group of the owner. Thus the owner of a task's
parent terves as a task's effective owner until some toucher task wrests ownership away.0

Whenever a task spawns another task and the parent task's group and effective group
differ, the child task is added as an effective child to the parent task's effective tasknode.
Then whenever the staying algorithm stays a task or group, the algorithm stays all the
indirect descendants - the effective children - which have that effective group, as well as all

ONote that ownership can then revert back to the task's tasknode If the source priority subsequently
exceeds the maxwaiter priority. Excepting changes in source priority via change-priority, this is not a
problem since the objective Is to solve the wunstayable" descendant problem, which occurs when the source
priority is 0 due to staying the task's group and the task is touched by a task in another group.

10.5. PERFORMANCE 235

the direct descendants of that task or group. This prevents any "unstayable descendants,
as described in Section 6.3. To support this changc in the staying algorithm, task creation
must check the staycount in both a task's group and effective group before spawning a task.

We maintain the tasknode tree with weak pointers. Weak pointers have the property
that an object accessible only via weak pointers is garbage-collected at the next garbage
collection flip.7 See (Miller] for a good description of weak pointers and their implementa-
lion. Tasknodes and group objects are linked with weak pointers. Strong backpointers from
task objects and descendant tasknodes and group objects force these tasknodes and group
objects to be retained until they are no longer necessary.8 We omit the complicated details.
Note, though, that the only pointers that the system (as opposed to the user) maintains to

stayed tasks are weak pointers so that such tasks may be garbage-collected.

10.5 Performance

Thorough investigation of the performance of our implementation is a project for future
work. We provide three different performance measurements here. The following table
compares the time to spawn mandatory and speculative tasks on the Encore Multimax.
(We would have rather presented the times for spawning these tasks on Concert, but the
failure of Concert, as noted in the beginning of Chapter 8, prevented the necessary data
collection.)

Input Execution time
(touch (future nil)) (executed by a mandatory task) 1.5-2.2 msec.
(touch (spec-future nil 100)) 1.8-2.5 resec.
(touch (group-future (make-group nil 100))) 2.1-2.9 msec.
(touch (future nil)) (executed by a speculative task) 1.8-2.5 msec.

These figures give some idea of the spawn time cost of our speculative computation
support. The times vary according to the steps of the scheduling algorithm exe .uted due to
machine load (see Section 10.2). For instance, (touch (future nil)) takes 1.5 msec if the
machine is unsaturated and 2.2 msec if the machine is saturated, due to all the searching for a
free or preemptable processor. In comparison, (touch (:future nil)) takes 1.3 msec in the
original Multilisp implementation (independent of loading), which is almost the same as in
our implementation (when executed by a mandatory task) with the machine unsaturated.9

'Multillsp uses a parallel version of Baker's [Baker78b] Incremental, copying garbage collector which we

extended for weak pointers.
'A task, for example, has strong backpointers to Its group and tasknode objects (making double use of

these attribute fields).
*The time for this operation In the original implementation is independent of loading because It includes

only the time to create and queue a task. The time in our Implementation also Includes a substantial portion
of the time to match a task with a processor. This Is the main reason for this 0.7 msec variation in execution
time in our implementation.

236 CHAPTER 10. IMPLEMENTATION DETAILS

This indicates that we largely succeed-d in our goal of minimizing the impact of speculative
computation support on the performance of mandatory tasks.

To get some idea of the run-time cost of our speculative computation support, we com-
pared the running time of mandatory and speculative tasks executing the same sequential
program on the Concert Multiprocessor. We found that polling imposes about a 5% slow-
down and specq balancing imposes about a further 5% slow-down in speculative task exe-
cution rate. This polling overhead does not occur in speculative tasks with priority MIAX
since these tasks do not need to check for prcemption, only a change in priority. Conse-
quently, such tasks run at about the same rate as mandatory tasks. This spccq balancing
overhead only occurs in cluster state 2 (see Section 10.2).

We performed a preliminary performance investigation and found that specq overhead
is a substantial part of the spawn and run time overheads. On the Concert Multiprocessor,
the time to insert and delete a task in a specq with more than 3 tasks is about .4 and .8
msec respectively. (The corresponding time, to evaluate (touch (future nil)) on Concert
is 2.7 msec in the original implementation.)

10.6 Optimizations

The following is a list, in order of expected benefit, of what we consider the major optimiza-
tions to improve the performance of our present implementation. (Further performance
analysis of the implementation may suggest different optimizations or change the expected
benefit of these optimizations.)

1. priority queue improvements - Optimize the current priority queue implementation
and perhaps try the parallel priority queue algorithm described in [Rao].

2. task node elimination - Eliminate the current indirection through tasknodes (we did
not discuss this). This promises to make task creation and staying much faster.

3. parallel staying - Parallelize staying as described earlier.

4. parallel or incremental priority propagation - Make priority propagation along touch
trees, such as resulting from type all classes, more efficient. Incremental propagation
could also reduce useless updates and lessen the problem with cycles described in
Section 6.1.1 but at the cost of greater response time in priority changes, as described
in Section 6.4.4.

10.7 Summary

We retained the original Multilisp implementation and added four major additions to sup-
port speculative computation. speculative tasks, preemptive scheduling, priority propa-
gation, and staying. We largely met our goal of limiting the overhead of this support to

10.7. SUMMARY 237

speculative tasks. The performance of this speculative computation support needs improvL-
mcnt, particularly in the area of priority queue manipulation.

238

Chapter 11

Conclusions and Future Work

11.1 Conclusions

The major contributions of this thesis are:

1. An elucidation of the issues involved and the requirements for supporting speculative
computation in Multilisp.

These issues and requirements are applicable to other computational paradigms as
well.

2. A sponsor model for speculative computation which addresses these requirements.

This model handles control and reclamation of computation in a single, elegant frame-
work. This model can also handle sidz-effects t , illustrating the power of this model.

3. Experimental evidence of the benefit, of speculative computation and the benefit of
our model and support for speculative computation.

Our support for speculative computation adds expressive and computational power.

Minor contributions of this thesis are: a definition of speculative computation; a dis-
tinction of the different types of speculative computation; and a discussion of the optimal
scheduling of speculative computation with a new result for pit.

We discuss each of the major contributions.

Issues and Requirements

Speculative styles of computation exploit exccssq resources in an attempt to reduce the
critical path length and, hence, the execution time of applications. The success of this

'Actually, side-effect synchronization as discussed in Chapter 7.

239

240 C11APTER 11. CONCLUSIONS AND FUTURE WORK

approach depends on having excess resources (at least some of the time) and exploiting
these excess resources efficiently. The key issues for efficient speculatve computation are:

1. reclaiming computation, i.e. reclaiming the resources assigned to unnecessary com-
putation, and

2. controlling computation, i.e. controlling the allocation of resources to computation.

The importance of reclaiming computation is obvious. All research concerned with
spccu!ative styles of computation (that we know about) addresses this issue in one way or
another. We argued that this issue leads to the following requirement:

1. Explicit computation reclamation nt the system level

Implicit reclamation, i.e. garbage-collection of computation, is too inefficient.

With explicit reclamation we have the additional requirements:

2. Automatic naming of descendant tasks'

Automatic naming of descendants solves the problem with unknown function calls
and reduces the burden of managing descendant tasks for reclamation.

3. Reversible reclamation

The possibility of shared computation (possible even without side-effects due to lazy
thunks) and users mistakenly declaring computation irrelevant means that ureclaimed"
computation may be relevant and thus need to be "unreclaimed."

Our position on explicit reclamation and its logical consequences - automatic naming
of descendants and reversible reclamation - sets our work apart from other work.

Controlling computation is also very important, as our examples, particularly Boyer,
demonstrate. However, this issue has received little attention by others. The major compo-
nent of this issue is determining what control we want. This involves examining applications
and optimal scheduling to determine the control policies and support required. However,
even without knowing exactly what control we want in all cases, we argued that controlling
computation has the following requirements. We need:

1. Ordering

We need some way to allocate resources to computation in accordance with the relative
promise of computations, i.e. some way to order computation. This is the most
important control for speculative computation.

20r whatever the paradigm calls the smallest controllable units of computation.

11.1. CONCLUSIONS 241

2. Demand transitivity
Ordering must obey demand transitivity. If we use priorities to express the desired
ordering, we want the priority of a demandee to be at least that of the demander.

3. Modularity
We should be able to embed a group of spec!.ilative computations as a subcomputation
in any other speculative computation and retain the local ordering within the group.

4. Other control
Some desired control does not fit in the other categories of requirements. For example,
sometimes we want complex, dynamic control capable of responding to changes in
demand for speculative computation and changes in the allocation of resources.

A third issue in a computational paradigm like Multilisp is side-effects. Side-effects
complicate computation reclamation since a computation may be relevant for the potential
synchronization represented by its side.eff.3ts. This difficulty cements the requirement of
roversible reclamation. Side-effects so complicate relevancy analysis - through the sharing
of computation in non-obvious and insidious ways, for example - that it is easier to allow
reclamation mistakes, undoing them when necessary, then attempting to avoid them. Also,
reversible reclamation is useful as a safety net even without side-effects since it can be
difficult to foresee all the interactions of computation, especially in a large system.

The Sponsor Model

To address the above requirements, we introduced a simple model based on the notion of
sponsors. Sponsors supply tasks with attributes which control resource allocation. This
sponsor model provides computation control with ordering controlled by external and con-
troller sponsors, demand transitivity with the max combining-rule, modularity with groups,
and more complex, dynamic control with controller sponsors. The model is a confluence
of eager and demand-driven scheduling. This confluence allows the sponsor model to unify
computation control and reclamation in one simple framework. Reclamation is explicit and
reversible - reclamation occurs by simply unsponsoring computation. (Automatic naming
of descendants is a requirement left to the implementation.) We demonstrated that we can
also handle side-cffects within the framework of the sponsor model, we simply have to ensare
that (potentially) relevant computation receives sponsorship. Finally, the demand-driven
aspect of the model provides an important safety net, as we argued above.

This sponsor model should furnish an archetype for speculative computation in other
parallel language paradigms.

Experimental Evidence

The touching model we implemented, a subset of the sponsor model, was intended as a
simple prototype and consequently suffers ftom a number of deficiencies. The most se-

242 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

rious deficiency is lack of modularity. Nevertheles, we were able to successfully exploit
speculative computation with this implementation for several applications.

The applications we considered demonstrate the following:

1. the importance of aborting useless computation

Tree equal and Emycin demonstrate the importance of aborting useless computation.

2. the importance of ordering comput4tion

Boyer, travsales, and Eight-puzzle all demonstrate the importance of ordering com-
putation. In the case of Boyer, ordering sped execution by about a factor of about
2 (with 16 processors) and in the case of Eight-puzzle, ordering sped execution by a
factor of 26 (with 8 processors) over a naive approach.

3. the expressive and computational power added by our support for speculative com-
putation

The expressive power comes from the ability to control computation - with priorities
for ordering, explicit computation reclamation (staying), and controller sponsors -
and the interaction of computation - with the max combining-rule. With our
support for speculative computation we can realize a small gain with Emycin where
other approaches either realize no gain, as with implicit reclamation, or fail, as with
a naive approach like explicit checking. Furthermore, our support makes it easier to
manage machine resources, and thus makes programming easier. The computational
power comes from the significant improvement in performance - a factor of 2 with
Boyer and a factor of 26 with Eight-puzle.

We have successfully met our goals: we have provided a model and implementation
support for speculative computation in Multilisp with which we demonstrated the benefit
of speculative computation. Much work remains, however. In the short term we need to
extend and improve the implementation, adding full controller sponsors and modularity.
We present our thoughts for longer term work in Section 11.2.

11.1.1 Problems and limitations

In this section we discuss some negative aspects of our approach.

The Sponsor Model

The sponsor model increases the burden on the programmer. In addition to ensuring
functional correctness, the programmer must now ensure correct sponsorship. In most
c ase subuptimal sponsorship or lack of sponsorship just results in performance inefficiency
since computation is ultimately sponsored when it is demanded by touching - this is the

11.1. CONCLUSIONS 243

safety net resulting from the demand-driven aspect of the sponsor mod-l. This tolerance is
fortunate since it is often difficult to decide how to control computation.

However, correct sponsorship is critical in any situation in which implicit sponsorship, by
touching, does not follow demand. Two examples of such situations are multiple, approach
speculative computation, like naive por (e.g. version 1 of speculative por in Figure 8.2),
and side-efrects. Demanding the result of multiple-approach speculative computation, e.g.
demanding the result of naive pOr, does not ensure that each approach or disjunct is spon-
so.-ed. Likewise, requiring a side-effect, such as releasing a semaphore, does not ensure that
the task(s) responsible for performing the side-effect is (are) sponsored. In both cases, the
demand lies outside the implicit sponsorship channels and in both cues, lack of sponsorship
can lead to deadlock. Co- tly, the programmer must explicitly ensure sponsorship by,
for example, using c) . de could make sponsorship implicit in the case of multiple-
approach speculative computation by a ubranching touch* - a touch which propagates
down each branch of a special fork node representing multiple approaches. This would be
just like our type. all class. However, no one sponsorship distribution policy is optimal in
such cases: should it be a type all class or a type pqueue class? Thus we prefer to leave
such sponsorship explicit, to be determined as a component of the desired computation
control.

Computation control and side-effect sponsorship are inherently imperative. The compu-
tational power that we gained with our support for speculative computation came from the
ability to express the detailed control - ordering and aborting -- that we wanted. Such
expression is imperative and tricky to get correct but adds power not previously available in
Multilisp. The question is: how much of this imperativeness does the user have to see? How
much of this imperativeness can be hidden through appropriate interfaces (macros and user
libraries) to make the model declarative at the user level? For example, we argued above
that our support for speculative computation added expressive power since it moved some
of the low-level resource management to the implementation and freed the programmer
from these burdens. These questions are fodder for future work.

User Interface

The previous subsection highlights that our support for speculative computation is really
an "assembly language" for speculative computation. This was a conscious design decision
- we wanted to provide a flexible, low-level interface that others could build upon. For
ordinary users we need to develop higher-level interfaces defined by macros and libraries.
These libraries can house control details and optimizations.

Parallelism control

As we mentioned in Section 8.2, a major problem with Multilisp is how to avoid generating
tasks in excess of machine parallelism. Such excess tasks represent inefficiency: their gener-
ation wastes time and consumes memory space. For conventional, mandatory computation

244 C1APTER 11. CONCLUSIONS AND FUTURE WORK

we want to coitrol task generation to "impedance match" the application parallelism to
the machine parallelism (and to control memory use).

Iloweer, p.arallelism control is fundamentally at odds with speculative computation. For
speculative computation we want to encourage task generation so we have the flexibility
to always be pursuing the most promising computation. In the Eight-puzzle application,
for instance, v c want breadth-first search, which produces an enormous number of tasks,
for minimum execution time, but we want depth-first scarch to limit the number of tasks
generated (and hence memory utilized). For speculative computaU' . to be really successful
we need to strike a compromise between the cost and benefit of excess tasks.

11.2 Future3 Work

We see two compc.nents for future work. the theory of speculative computation and the
practice of speculative computation.

11.2.1 Theory of speculative computation

We need to further understand the fundamentals of speculative computation and under-
stand its fundamental benefits and costs. We need to develop this understanding in the
context of an idealized, abstract model, like the one we assumed in Chapter 9 on schedul-
ing. We can then extrapolate the understanding from this model to guide the practice of
speculative computation. Within this abstract model we need to study optimal scheduling
and applications. From optimal scheduling we can determine optimal scheduling policies for
speculative computation - to determine what control is desired - and assess the ultimate
benefit of speculative computation. From applications we can assess the requirements and
benefits of speculative computation. We ,iced to look at many examples to determ. ;ne the
ideal support for speculative computation. Finally, we need to examine the properties of
our sponsor model in terms of this abstract model.

11.2.2 Practice of speculative computation

Our long term goal is an implementation for efficient and effective support of speculative
computation. Our present implementation is a start. The path to this goal necessarily
alternates between implementation and experimentation, and hopefully has the guidance of
an abstract model, as mentioned above.

On the implementation side, we need to complete our approach. We need to further
develop the sponsor model, adding full controller sponsors and modularity. We need to add
parallel staying, other attributes - like duration so we can handle precomputing specu-

'Pardon the pun

11.3. CLOSING COMMENT 245

lative computations like speculative streams, and like priority ranges. We need to make
improvements in priority queues and the tasknode tree.

On the experimentation side, we need to further assess the benefits, difficulties, and
costs of our present implementation and continue this assessment for future work. This un-
derstanding will help guide the work on future implementation. There are two components
to this experimentation. The first component is implementation costs. We need to analyze
the performance of the implementation to determine the implementation costs and how they
can be reduced. The second component is applications. Vo need to experiment with many
different prospective applications of speculative computation to determine the benefits and
difficulties of speculative computation in our implementation. We need to determine the
performance gain of speculative computation and the suitability of our sponsor model, the
constructs, and the user/system interface. We need to consider large applications so we
can understand how speculative computations interact within an application and also to
serve as a Ureality" check on our smaller toy applications. Finally, we need users to provide
feedback.

On the implementation side again, we need to convert to a compiler-based implemen-
tation, such as Mul-T [K1ranz], so we can obtain a more realistic idea of the benefits and
costs of speculative computation without the artifacts in the present implementation. The
interpreter in the present version biases the cost of some parts of the system relative to
other parts and obscures certain costs, like that of priority queues, making it difficult to
factor out the effect of the interpreter. A compiler-based implementation will eliminate
such biases. In addition, any compiler-based implementation will be much faster, which
will greatly facilitate investigation of large applications.

In the much longer term, an area for future work is architectural support for specula-
tive computation, such as hardware priority queues and perhaps selection networks, as in
MANIP [Wah], for distributing top-priority tasks around the machine.

11.3 Closing Comment

Speculative computation is a fundamental. idea that will become very important in the future
for searching-type applications as larger parallel machines proliferate. 4 Since search forms
the core of m.t A.I. applications, speculative computation will be particularly important in
the efficient application of A.I. technology, as A.I. systems become more commonplace. We
have illuminated the issues concerned with speculative computation and presented a model
for speculative computation in Multilisp. This model should be useful as an archetype for
speculative computation in other languages. Much work remains in assessing and refining
this model and studying speculative computation in general.

"Speculation has already become important in high-performance computer architecture in the form of
branch prediction and multiple-approach speculation, as In VLIW architectures like the Multiaow Trace.

246

Appendix A

Language Features

This appendix lists all the language features we added to Multilisp to support speculative
computation. This list is intended to serve both as a reference guide, with all the features
organized in one place, and as a supplement to the description in Sections 6.2 and 7.4.

A.1 Task and future creation and manipulation

(future exp optional dc handler) is exactly the same as described in [Hals86b] (it creates
a task to evaluate exp and immediately returns a placeholder - called the goal future -
for the result) except for the following changes:

1. if the parent task is a mandatory task, future creates a mandatory task, and

2. if the parent task is a speculative task, f uture creates a speculative task with source
priority equal to the parent's effective priority.

dc is a document string, used by the debugger and Parvis, for identifying the placeholder

and handler is an exception handler. These optional arguments are described in [Hals86b.

(dfuture exp &optional dc handler) incorporates exactly the same changes as for future.

(delay ezp &optional dc handler) incorporates the same changes as for future, except that
if it creates a speculative task, its source priority is 0. Thus, if evaluated by a speculative
task, (delay E) is exactly equivalent to (spec-future E 0).

(spec -future ezp pri &optional dc handler) creates a speculative task with source priority
pri to evaluate exp and immediately returns a placeholder for the result, just as future does.
pri must be an integer in the range [0, MAX], where MAX is implementation-specific.

(make-future &optional class) creates and returns a placeholder and sponsors the class class
(if specified) with the maximum priority task blocked on the placeholder. Ths sponsorship
is removed when the placeholder is determined.

247

243 APPENDIX A. LANGUAGE FEATURES

(my-iuture) returns the future object of the executing task.

A.2 Groups

(make-group czp pri &optional doc handler) is the same as spec-futur except it returns
a group object. A group object consists of a group identifier which is the name for a
make-group task and all its descendant tasks and the placeholder object for the result of
the make-group task. Again, pri must be an integer in the range A0, MAXJ.

(group-id grpobj) returns the group identifier of group object grpobi.

(group-future grpobj) returns the placeholder, i.e. future, object of group object grpobj.

(my-group-obi) returns the group object representing the executing task's group. A task's
group is always the newest ancestral group.

A.3 Staying and priority manipulation

(stay-task obj): if obi is an undetermined future object f, then performs the staying
operation on, i.e. sets the source priority to zero for, the speculative task with goal future
f and all its descendants. Otherwise, this construct does nothing. It returns an unspecified
value.

(stay-group group) performs the ntvying operation on all members of the group group, i.e.
it stays all group members. It returns an unspecified value.

(get-priority f): if obi is an undetermined future object f, then returns the effective
priority of the speculative tetsk with goal future f. Otherwise, this construct does nothing.
Depending on implementatlion specifics, a mandatory task or a speculative task promoted
to mandatory status may have a priority MAND exceeding MAX, the maximum priority
for speculative tasks.

(change-priority obi new-pri): if objis an undetermined future object f, then changes the
priority of the speculative task whose goal future is f to new-pri. It returns an unspecified
value. Otherwise, this construct does nothing. new-pri must be an integer in the range
[0, MAX], where MAX is implementation specific. Note: 1) This construct cannot be used
to promote a task to mandatory status (priority and status are orthogonal at the language
level), 2) It is an error to change the priority of a task promoted to mandatory status; and
3) If this construct is used to stay a task, by setting the task's source priority to 0, it does
not stay the descendants of that task.

A.4. CLASSES 249

A.4 Classes

(mako-class class.type) creates and returns a class object. A class is collection of tasks
and a sponsor in the fashion of the groups mentioned in Chapter 5. Unlike the members of
a group created with the make-group construct, the members of a class are arbitrary and
not necessarily all descendants of a common parent. There are three types of classes, each
of which corresponds to a different type of primitive group sponsor:

1. class-all, in which the class sponsor sponsors all the members of the class,

2. class-any, in which the class sponsor sponsors an arbitrary member of the class, and

3. class-pquoue, in which the class sponsor sponsors only the top-priority task in the

class.

A class can be sponsored by the maximum-priority task blocked on a placeholder or semaphore
or the maximum-priority task enqueued on a priority queue object.

(add-to-class obi class): if obj is an undetermined future object f or a class object c, then
add-to-class adds either the task associated with f or the class object c to the class class.
Otherwise, add-to-class does nothing. It returns an unspecified value.

(remove-from-class obi class) functions like add-to-class but instead removes obi from
the class class. In addition, when a tesk terminates, it is automatically removed from any
classes to which it belongs.

(enter class) adds the evaluating task to the given cl?.ss.

(e)it class) removes the evaluating task from the given class.

These last two constructs are macros which expand to (add-to-class (my-future) class)
and (remove-from-class (my-future) class) respectively.

A.5 Semaphores

(make-sema &optional (count 1) class) cr: ates end returns a semaphore object which son-
sists of a count of the taskts which may still enter the critical region, a priority queue for
tasks waiting to enter the critical region, and a class for waiting tasks to sponsor. The
count field is initialized to count (which must be > 0), or 1 if count is omitted. If count is
initialized to 1, the semaphore is a binary semaphore, otherwise it is a general semaphore.
The maximum priority task in the priority queue sponsors the class in the class field, which
is initialized to class (or nil if class is omitted). This field is accessible via the construct

(get-sera-class sema) and may be set via

(set-sema-class sema class)

250 APPENDIX A. LANGUAGE FEATURES

(wait-sea sema &optional cr.thunk) is a standard samaphore wait operation augmented
with a "critical region thunk". If present, the optional argument cr.thunk should be a
procedure of zero arguments (otherwise an error will occur). The task executing wait-seas
tests the count associated with scmea and, if nonzero, decrements the count and promotes
itself to mandatory status. Otherwise, the task enqueues itself in the priority queue of
waiters for scma and suspends. The test and these subsequent actions (either decrement
and promote or enqueue) occur indivisibly. If the count was nonzero, the task applies cr-
thunk (if present), demotes itself to its proper status, and finally returns from wait-sea.

(signal-sena sema &optional cr-thunk) is a standard semaphore signal operation aug-
mented with a "critical region thunk" like in wait-aema. If cr-thunk is present, the task
executing signal-sema promotes itself to mandatory status, applies the zero argument
procedure cr thunk, signals the semaphore sema (as described shortly), and then demotes
itself. If crthunk is omitted, the task executing signal-sea& signals aetna as follows. If the
count associated with smea is zero, the task dequcues the maximum priority (suspended)
task from the priority queue of waiters for scma, promotes this task to mandatory status,
and resumes it. Otherwise, the executing task increments count. The test and subsequent
action in either case occur indivisibly.

A.6 Status manipulation

(promote-task) temporarily promotes the executing task to be a mandatory task. It returns
an unspecified value.

(demote-task) demotes a task temporarily promoted to mandatory status. It returns an
unspecified value.

(rplacz-eq-mand pair new old), == a or d, performs the following eq check and possible
swap atomically: If the cxr of pair is eq to old, the czr of pair is replaced by new, the
executing task is promoted to mandatory status, and pair is returned. If the czr of pair is
not eq to old, nil is returned.

Appendix B

Definitions of por and pand

We provide precise semantics o" per and pand in this Appendix.

(pr El E2 ... En)

per evaluates the expressions Ej in arbitrary order and returns the value of the "firstv
expression to evaluate to true, i.e. non-nil. In this case, any remaining evaluations may be
aborted. If all of the n expressions 1 , BA, ... , E4 evaluate to nil, per returns nil.

By "first" we mean a nondeterministic choice among all expressions A- which would
evaluate to true (if evaluated). We can express this notion of Ifirst" in terms of McCarthy's
arb operator [McCarthy).

either a or b if both a and b are defined,

(ambab) a if a is defined,
a b if b is defined, and

undefined if both a and b are undefined.

Thus the value of the "first' of E and E 2 to evaluate to true is

(anb (or E .1) (or E 2))

where _L means undefined. We can extend this denotation of "first" to n expressions E, by
using an "arb" tree. Note that the specification of arb does not imply that both arguments
must be evaluated, if one argument evaluates to a defined value, the other argument does
not necessarily have to be evaluated. Thus a value may be returned without fully evaluating
more than one E, to a true value. This is consistent with the (usual) informal notion of
"first". (Any such implied temporal property beyond our definition above is implementation
dependent.)

We can define the semantics of per in terms of anb as follows:

251

252 APPENDIX B. DEFINITIONS OF POR AND PAID

(por El E2) M (let ((a (delay E£))
(b (delay £2)))

(amb (touch (or a b))
(touch (or b a))))

When one of the arguments to amb returns a value, the evaluation of the other argument
may be aborted, which in this context amounts to :nerely halting such tvaluations.

By aborted, we mean that any remaining evaluations are halted after pcrhaps any
appropriate action for side-effects is performed. The exct definition of aborting depends
on the computational model. In the context of our touching model aborting means stayisig;
this is how we interpret aborting in this thesis.

Finally, note, as alluded above, that there is no guarantee any particular expression E
is evaluated, unless all Ej evaluate to nil.

(pand El I2 ...

pand evaluates the expressions E, in arbitrary order and returns nil if any expression evalu-
ates to nil. In this case, any remaining evaluations may be aborted. If all of the n expressions
El, -2, ... , E,, evaluate to true, pand returns an arbitrary true value.

par and pand, as we defined them, are logical duals but not semantic duals: par is
strictly more powerful than pand since par returns the actual value of the first ED to
evaluate to a true value. That is, par is both a ufirst-of" operator, returning the value
of the first true-valued £,, and a logical or. pand is not a first-of operator because of the
asymmetry between false, which is the single value nil, and true, which is any non-nil value.
(We could make par and pand semantic duals by restricting par to return boolean values
(nil' and '#t). We chose not to do this because of the loss of semantic power. We could
add a separate first-of operator to regain this semantic power, but such aa operator seems
superfluous in addition to por.)

We can define pand in terms of par as

(pand El A ... E,) =_ (not (par (not E) (not E2) ... (not E,)))

but we cannot define par in terms of pand since the true value that pand returns is arbitrary.

'Technically #f.

Appendix C

ParVis

ParVis is a program visualization tool for Multilisp developed by Bagnall IBagnall] which
is invaluable for understanding the performance of Multilisp programs. We used ParVis
extensively to understand the potential and the effect of speculative computation in various
programs.

1

ParVis collects information on task state transitions and intertask communication during
program execution. After some postmortem analysis, ParVis displays

1. the state of each task in the program execution as a function of time, and

2. intertask dependences

on a high resolution bit mapped terminal (a Symbolics Lisp Machine terminal) as depicted
in Figure 0.1.

ParViq considers a task to be in one of four states: running, queued, waiting, and no
task, as indicated on the top of Figure C.1. The running atate indicates that the task
is executing; the waiting state indicates the task is blocked on an undetermined future
or suspended; the queued state indicates that the t.sk is runnable but queued, awaiting
assignment to a processor; and the no task state indicates that the corresponding future
object has no task. The no task state occurs in three cases:

1. After the creation of a future object but before the creation of its task object. For
example, with delay a future object is created immediately but a task is not created
until the future is touched.

2. If the task quits (via the Multilisp quit primitive).

3. A placeholder, which never has a task.

'ParVis also proved useful for debugging our Implementation.

253

254 APPENDIX C. PARVIS

1 m eM., -- '~UutgM I l lnI

1 ' 1 1.5ii I

Figure 0.1: An example ParVi3 display

In our implementation we also overload the no task state to mean that the task is in the
staycd state. In this case the future object does actually havo a task but it is not in any of
the other three states that PairVis recognizes.

ParVis indicates intertask dependences with arrows between tasks, as in Figure 0.1.
There are four types of arrows:

1. create arrows - These aro fat arrows from the creator of a future object to the future
object.

2. touch arrows - These are narrow arrows from one task to another signifying that the
first task blocked on the second, i.e. that the first task touched the undetermined
future object associated with the task at the head of the arrow.

3. resume arrows - These are narrow arrows from the end of one task to other tasks.
These arrows signify the resumption of waiting toucher tasks when a task is deter-
mined.

4. explicit determine arrows - These are dashed arrows from the terminer task to the
determinee future object.

Figure C.1 contains each type of arrow.

255-

The lower part of Figure C.1 contains a parallelism profile (number of running tasks
versus time) based on the task state information collected and displayed in the upper part
of the Figure C.I. All the parallelism profiles in this thesis were obtained from ParVis.

The raw state transition and intertask communication information for ParVis was col-
lected by instrumenting our implementation to record events signifying state transitions
and intertask communication. Example events are create-future, make-runnable, run, de-
termine, touch (an undetermined future). This instrumentation contributes an overhead
which, of course, varies with the characteristics of the program but is not worse than about
10% degradation in execution time.

We have eliminated a number of details from the above description. For further infor-
mation on ParVis see [BagnallJ.

256

Bibliography

(Abelson] Abelson, H. and G. Sussman
Structure and Interprtation of Computer Programs
M.I.T. Press, Cambridge, MA., 1984

[Agha] Agha, G.
Actors: A Model of Concurrent Computation in Distributed Systems
M.I.T. Press, Cambridge, MA., 1987

[Bagnall] Bagnall, Laura
ParVis: A Program Visualization Tool for Multilisp
S.M. Thesis, EECS, M.I.T., January 1989

[Baker78a Baker, H.
List Processing in Real Time on a Serial Computer
Communications of the ACM, April 1978, p. 280-294

(Baker78b] Baker, H1. and C. Hewitt
The Incremental Garbage Collection of Processes
A.I. Lab. Memo 454, M.I.T., March 1978

[Ben-Ari] Ben-Ari, M.
Principles of Concurrent Programming
Prentice Hall, 1982

[Bishop] Bishop, P.
Computer Systems with a Very Large Address Space and Garbage Collection
TR-178, Laboratory for Computer Science, M.I.T., May 1977

[Brinch] Brinch Hansen, P.
Structured Multiprogramming
Communications of the ACM, p. 574-578, July 1972

[Bubenik] Bubenik, Rt. and Zwaenepoel, Willy
An Operational Semantics for Optimistic Computations
TR89-85, Department of Computer Science, Rice University, February 1989

[Burt85a] Burton, F. W.
Controlling Speculative Computation in a Parallel Functional

257

258 BIBLIOGRAPHY

Programming Language
Fifth Int'l Conf. on Distributed Computing, May 1985, p. 453-4158

[Burt85b] Burton, F. W.
Speculative Computation, Parallelism, and Functional Programming
IEEE Trans. on Computkro, Dec. 1985, p. 1190-1193

(Burt89l Burton, F. W.
Personal communication on March 30, 1989

[Chamber) Chamberlain, R., Edelman, M. Franklin, M., and Witte, E.
Simulated Annealing on a Multiprocessor
International Conf. on Computer Design, 1988

[Chika] Chikayama, T., Sato, II., and Miyazaki, T.
Overview of the Parallel Inference Machine Operating System (PIMOS)
Proc. of Int'l. Conf. on Fifth Generation Computer Systems, 1988, p. 231

(Clark] Clark, K. and Gregory, S.
PARLOG: Parallel Programming in Logic
Chapter 3 in Vol. 1 of Concurrent Prolog: Collected Papers
E. Shapiro, Ed., MIT Press, 1987

[Epstein] Epstein, B.
Support for S:'culative Computation in MultiScheme
B.S. Thesis, Brandeis University, Waltham, MA., May 1989

[Gabr84] Gabriel, R. and McCarthy, J.
Queue-based Multiprocessing Lisp
Proceedings 1984 ACM Conf. on Lisp and Functional Prog., p. 25-44, 1984

[Gabr85] Gabriel, R.
Performance Evaluation of Lisp Systems
M.I.T. Press, Cambridge, MA., 1985

[Gabr88] Gabriel, R., and McCarthy, J.
Qlisp
J. Kowalik, ed., Parallel Computation and Computers for Artificial Intelligence,
Kluwer Academic Publishers, 1987

[Gold88] Goldman, R. and Gabriel, R.
Qlisp: Parallel Processing in Lisp
Draft, summer 1988

[Gold89] Goldman, R. and Gabriel, R.
Qlisp: Parallel Processing in Lisp
IEEE Software, July 1989, p. 51

BIBLIOGRAPHY 259

fGonz77) Gonzalez, M.
Deterministic Processor Scheduling
ACM Computing Surveys, Sept. 1977, p.173

[Gonz78] Gonzalez, M. and Sahni, S.
Preemptive Scheduling of Uniform Processor Systems
Journal of ACM, Jan. 1978, p.92

[Grit) Grit, D. and R. Page
Deleting Irrelevant Tasks in an Expression-Oriented Multiprocessor System
ACM Trans. on Prog. Languages and Systems, October 1981, p. 49-59

[Hals86a] Halstead, R., T. Anderson, R. Osborne, and T. Sterling
Concert: Design of a Multiprocessor Development System
13th Annual Symp. on Computer Architecture, Tokyo, June 1986, p. 40-48

[11als85] Halstead, R.
Multilisp: A Language for Concurrent Symbolic Computation
ACM Trans. on Prog. Languages and Systems, October 1985, p. 501-538

(Hals86b] Halstead, R., J. Loaiza, and M. Ma
The Multilisp Manual
Parallel Processing Group, Laboratory for Computer Science, M.I.T.,
June 1986

[Hals86c] Halstead, R.
Parallel Symbolic Computing
IEEE Computer, August 1986, p. 35-43

[Hals87 Halstead, R.
Parallel Computing Using Multilisp
J. Kowalik, ed., Parallel Computation and Computers for Artificial Intelligence,
Kluwer Academic Publishcrs, 1987

[Hals86dj Halstead, R.
An Assessment of Multilisp: Lessons From Experience
International Journal of Parallel Programming, Dec. 1986, Plenum Press, New
York

[Hausman; Hausman, B., Ciepielewski, A., and Calderwood, A.
Cut and Side-effects in Or-Parallel Prolog
Proc. of Int'l. Conf. on Fifth Generation Computer Systems, 1988, p. 831

[Heller] Heller, S.
Efficient Lazy Data-Structures on a Dataflow Machine
Ph.D. Thesis, EECS, M.I.T., January 1989

[Herlihy] Herlihy, M.
Optimistic Concurrency Control for Abstract Data Types

260 BIBLIOGRAPHY

Proc. of Fifth ACM SIGACT-SIGOPS Symp. on Principles of
Distributed Computing, 1986

[Hoare) Hoare, C.
Monitors: An Operating System Structuring Concept
Communications of the ACM, p. 549-557, October 1974
and Erratum in Communications of the A CM, p. 95, February 1975

[Hud82 Hudak, P. and Keller, R.
Garbage Collection and Task Deletion in Distributed Applicative Processing
Systems
Proceedings 1982 ACM Conf. on Lisp and Functional Prog., p. 168-178, 1982

(Hud83 Hudak, P.
Distributed Task and Memory Management
Proceedings of Symposium on Principles of Distributed Computing
Lynch, N. et al Eds., p. 277-289, 1983

[Hud841 Hudak, P.
Distributed Applicative Processing Systems: Project Goals, Motivation, and
Status Report
Technical Report TR,-317, Yale University, May 1984

[Ito] Ito, T., and Matsui, M.
A Parallel Lisp Language PAILISP and its lV.wnel Specification
To be published in proceedings of US/Japan Workshop on Parallel Lisp
Sendai, Japan, June 5-8, 1989

[Jeffer] D. Jefferson
Virtual Time
A CM Trans. on Prog. Languages and Systems, July 1985

[Johnson] Johnson, D. and Zwaenepoel, W.
Recovery in Distributed Systems Using Optimistic Logging and Checkpointing
Proc. of Seventh ACM SIGACT-SIGOPS Symp. on Principles of
Distributed Computing, 1988

[Katz] Katz, M. and Weise, D.
Continuing into the Future: On the interaction of Futures and First-class
Continuations
To be published in proceedings of U.S./Japan Workshop on Parallel Lisp
Sendai, Japan, June 5-8, 1989

[Knuth] Knuth, D.
The Art of Computer Programming: Vol. 3, Sorting and Searching
Addison-Wesley, 1973

[Korn79] Kornfeld, W.
Using Parallel Processing for Problem Solving
A.I. Lab. Memo 561, M.I.T., December 1979

BIBLIOGRAPHtY 261

[Korn~la Kornfeld, W.
The Use of Parallelism to Implement a Heuristic Search
A.I. Lab. Memo 627, M.I.T., March 1981

[Korn8lbJ Kornfeld, W. and C. Hewitt
The Scientific Community Metaphor
IEEE Trans. on Systems, Man, and Cybernetics, January 1981

[Korn82] Kornfeld, W.
Combinatorially Implosive Algorithms
Communications of the ACM, October 1982, p. 734-738

[Krall] Krall, E. and P. McGehearty
A Case Study of Parallel Execution of a Rule-Based Expert System
Int'l. Journal of Parallel Programming, January 1986, p. 5-32

[Kranz] Kranz, D., Halstead, R., Mohr, E.
Mul-T: A High-Performance Parallel Lisp
SigPlan 1989 Conf. on Prog. Language Design and Implementation

(Kung] Kung, H, and Robinson, J.
On Optimistic Methods for Concurrency Control
ACM Trans. on DataBase Systems, June 1981, p. 213-226

[£.iebermanl Lieberman, H. and C. Hewitt
A Real-Time Garbage Collector Based on the Lifetimes of Objects
Communications of the ACM, June 1983, p. 419-429

[Lusk) Lusk, E. et al
The Aurora Or-Parallel Prolog System
Proc. of Int'l. Conf. on Fifth Generation Computer Systems, 1988, p. 819

[McCarthy] McCarthy, J.
A Basis for a Mathematical Theory of Computation
Computer Programming and Formal Systems
P. Braffort and D. Hirschberg, Eds., North-Holland, 1963

[Manning] Manning, C.
A Peek at Acore, An Actor Core Language
ACM SigPlan Notices, April 1989, p. 84-86

[Melle] Van Melle, W., A. Scott, J. Bennet, and M. Peairs
The Emycin Manual
Technical report STAN-CS-81-885, Stanford University, 1981

[Miller] Miller, J.
MultiScheme: A Parallel Processing System Based on MIT Scheme
TR-402, Laboratory for Computer Science, M.I.T., Sept. 1987

262 BIBLIOGRAPHY

[Mitten] Mitten, L.
An Analytic Solution to the Least Cost Testing Sequence Problem
Journal of Industrial Engincering, January-February 1960, p. 17

[Mohr) Mohr, E.
Personal communication on June 19, 1989
Computer Science Dept., Yale University

[Muntz] Muntz, R. and Coffman, E.
Optimal Preemptive Scheduling on Two-Processor Systems
IEEE Trans. Computers, Nov. 1969, p.1014

[Nikhil] Nikhil, R.

Id (version 88.0) Reference Manual
Computation Structtres Group Memo 284, Laboratory for Computer Science,
M.I.T., March 1988

[Nilsson) Nilsson, N.
Principles of Artificial Intelligence
Morgan Kaufmann, 1980

[Osborne] Osborne, R.
Efficient Support for Speculative Computation in Multilisp
Ph.D. Thesis Proposal, EECS, M.I.T., May 1988

[Rao] Rao, V. and Kumar, V.
Concurrent Insertions and Deletions in a Pxiority Queue
Proceedings of Int'l Parallel Processing Conference, August 1988

[Roes] Rees, J. and W. Clinger (Eds.)
Revised 3 Report on the Algorithmic Language Scheme
ACM SigPlan Notices, December 1986, p. 37-79

[Shapl] Shapiro, E.
A Subset of Concurrent Prolog and its Interpreter
Chapter 2 in Vol. 1 of Concurrent Pr,&7g: Collected Papers
E. Shapiro, Ed., MIT Press, 1987

[Shap2] Shapiro, E.
Concurrent Prolog: A Progress Report
Chapter 5 in Vol. 1 of Concurrent Prolog: Collected Papers
E. Shapiro, Ed., MIT Press, 1987

[Soley] Soley, R.
On the Efficient Exploitation of Speculation Under Dataflow Paradigms of
Control
Ph.D. Thesis, EECS, M.I.T., June 1989

BIBLIOGRAPHY 263

[Steele] Steele, G., Jr.
Common Lisp: T.e Language
Digital Press, 1984

[Strom] Strom, R. and Yemini, S.
Optimistic Recover" in Distributed Systems
A CM Trans. on Computer Systems, August 1985

[Take] Takeuchi, A.
Parallel Logic Programming Languages
Chapter 6 in Vol. 1 of Concurrent Prolog: Collected Papers
E. Shapiro, Ed., MIT Press, 1987

[Theriault] Theriault, D.
Issues in tio Design and Implementation of Act2
T1-728, A.I. Lab., M.I.T., June 1983

[Ueda] Ueda, K.
Guarded Horn Clauses
Chapter 4 in XVol. 1 of Concurrent Prolog: Collected Papers
E. Shapiro, Ed., MIT Press, 19837

[Wah] Wah, B., and Mt. E.
MANIP - A Multicomputer krhitecture for Solving Combinatorial
Extremum-Search Problems
IEEE Trans. on Computers, bi-ay 1984, p. 377-390

[Warren] Warren, D.
The S1I Model for Or-Parallel .'vcution of Pr,,0o&: Abstract Design
and Implementation Issues
Proc. of 1987 Sympos. on Logic I Laguages, p. 92

[Watt] Watt, S.
Bounded Parallelism in Computer Algebra
Rep)rt CS-86-12, Faculty of Mathematics, University of Waterloo, May 1986

[Weber] Weber, R.
Scheduling Jobs with Stochastic Processing Require. tents on
Parallel Machines to Minimize Makespan and Flowtime
J. Appl. Prob., Vol. 19, 1982, p.167-182

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Gary Koop, Code 433

Director, Code 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

